CS674 Natural Language Processing

- Last week
- Word sense disambiguation
- Today
- Noisy channel model
»Pronunciation variation in speech recognition

The pronunciation subproblem

- Given a series of phones, compute the most probable word that generated them.
- Simplifications
- Given the correct string of phones
» Speech recognizer relies on probabilistic estimators for each phone, so it's never entirely sure about the identification of any particular phone
- Given word boundaries
- "I [ni]..."
- [ni] \rightarrow neat, the, need, new, knee, to, and you
- Based on the (transcribed) Switchboard corpus
- Contextually-induced pronunciation variation

The pronunciation subproblem

[spooky music][music stops]
Head Knight of Ni: Ni!
Knights of Ni: Ni! Ni! Ni! Ni! Ni!

Arthur: Who are you?
Head Knight: We are the Knights Who Say...'Ni'!

We are the keepers of the
sacred words: 'Ni', 'Peng',
and 'Neee-wom'!

Probabilistic transduction

- surface representation \rightarrow lexical representation
- string of symbols representing the pronunciation of a word in context \rightarrow string of symbols representing the dictionary pronunciation
- [er] \rightarrow her, were, are, their, your
- exacerbated by pronunciation variation
» the pronounced as THEE or THUH
» some aspects of this variation are systematic
- sequence of letters in a mis-spelled word \rightarrow sequence of letters in correctly spelled words
- acress \rightarrow actress, cress, acres

Noisy channel model

- Channel introduces noise which makes it hard to recognize the true word.
- Goal: build a model of the channel so that we can figure out how it modified the true word...so that we can recover it.

Decoding algorithm

- Special case of Bayesian inference
- Bayesian classification
» Given observation, determine which of a set of classes it belongs to.
» Observation
*string of phones
»Classify as a
- word in the language

Bayesian approach

- Use Bayes' rule to transform into a product of two probabilities, each of which is easier to compute than $P(w \mid O)$

$$
P(x \mid y)=\frac{P(y \mid x) \quad P(x)}{P(y)}
$$

$$
\hat{w}=\underset{w \in V}{\arg \max } \frac{P \overbrace{(O \mid w)}^{\text {likelihood }} \overbrace{P(w)}^{\text {prior }}}{P(O)}
$$

Pronunciation subproblem

- Compute $=\arg \max$$\overbrace{P(y \mid w)}^{\text {likelihood }} \overbrace{P_{P(w)}^{\text {prior }}}$
$w \in W$
- where y represents the sequence of phones (e.g. [ni])
- and w represents the candidate word

Computing the prior

- Using the relative frequency of the word in a large corpus
- Brown corpus and Switchboard Treebank

\mathbf{w}	freq(w)	$\mathbf{P (w)}$
knee	61	.000024
the	114,834	.046
neat	338	.00013
need	1417	.00056
new	2625	.001

Sample rules that account for [ni]

Word	Rule Name	Rule	P
the	nasal assimilation	$\delta \Rightarrow \mathrm{n} /[+$ nasal $] \#-$	$[.15]$
neat	final t deletion	$t \Rightarrow 0 / V-\#$	$[.52]$
need	final d deletion	$d \Rightarrow 0 / V-\#$	$[.11]$
new	u fronting	$u \Rightarrow i /-\#[y]$	$[.36]$

Final results

- new is the most likely
- Turns out to be wrong
- "I [ni]..."

\mathbf{w}	$\mathbf{p}(\mathbf{y} \mid \mathbf{w})$	$\mathbf{p (w)}$	$\mathbf{p}(\mathbf{y} \mid \mathbf{w}) \mathbf{p}(\mathbf{w})$
new	.36	.001	.00036
neat	.52	.00013	.000068
need	.11	.00056	.000062
knee	1.00	.000024	.000024
the	0	.046	0

Decision trees for encoding lexical-to-surface pronunciation mappings

- Alternative to writing probabilistic pronunciation rules by hand is to learn the rules
- Decision tree approach - Riley (1991), Withgott and Chen (1993)
- Input to decision tree: a lexical phone described in terms of a set of features
- Output: classification and a probability

Example

Automatic induction of decision trees

- Riley / Withgott and Chen
- Used CART (Breiman et al. 1984)
- C4.5/C5.0 is an alternative
- How are decision trees induced automatically?
- Training examples
- Top-down induction

Training

- One tree for each lexical phone, p
- One example for each occurrence lexical phone in corpus
- Class value: surface realization of p
- Features: previous-lexical-phone, next-lexicalphone, position-in-syllable

