CS674 Natural Language Processing

- Last class
- Noisy channel model
- Bayesian method for the pronunciation subproblem in speech recognition
- Today
- Introduction to generative models of language
» What are they?
» Why they're important
» Issues for counting words
» Statistics of natural language
» Unsmoothed n-gram models

Motivation for generative models

- Word prediction
- Once upon a...
- I'd like to make a collect...
- Let's go outside and take a..
- The need for models of word prediction in NLP has not been uncontroversial
- But it must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term. -Noam Chomsky (1969)
- Every time I fire a linguist the recognition rate improves. -Fred Jelinek (IBM speech group, 1988)

Why are word prediction models

 important?- Augmentative communication systems
- For the disabled, to predict the next words the user wants to "speak"
- Computer-aided education
- System that helps kids learn to read (e.g. Mostow et al. system)
- Speech recognition
- Use preceding context to improve solutions to the subproblem of pronunciation variation
- Context-sensitive spelling
- Provide a better model of the prior --- P(w)
- Lexical tagging tasks
- ...

Why are word prediction models important?

- Closely related to the problem of computing the probability of a sequence of words
- Can be used to assign a probability to the next word in an incomplete sentence
- Useful for part-of-speech tagging, probabilistic parsing

N-gram model

- Uses the previous N-1 words to predict the next one
- 2-gram: bigram
- 3-gram: trigram
- In speech recognition, these statistical models of word sequences are referred to as a language model

Counting words in corpora

- Ok, so how many words are in this sentence?
- Depends on whether or not we treat punctuation marks as words
- Important for many NLP tasks
» Grammar-checking, spelling error detection, author identification, part-of-speech tagging
- Spoken language corpora
- Utterances don't usually have punctuation, but they do have other phenomena that we might or might not want to treat as words
» I do uh main- mainly business data processing
- Fragments
- Filled pauses
» um and uh behave more like words, so most speech recognition systems treat them as such

Counting words in corpora

- Capitalization
- Should They and they be treated as the same word?
» For most statistical NLP applications, they are
» Sometimes capitalization information is maintained as a feature
E.g. spelling error correction, part-of-speech tagging
- Inflected forms
- Should walks and walk be treated as the same word?
» No...for most n-gram based systems
» based on the wordform (i.e. the inflected form as it appears in the corpus) rather than the lemma (i.e. set of lexical forms that have the same stem)

Counting words in corpora

- Need to distinguish
- word types
» the number of distinct words
- word tokens
» the number of running words
- Example
- All for one and one for all.
- 8 tokens (counting punctuation)
- 6 types (assuming capitalized and uncapitalized versions of the same token are treated separately)

Topics for today

- Today
- Introduction to generative models of language
» What are they?
» Why they're important
» Issues for counting words
» Statistics of natural language
» Unsmoothed n-gram models

How many words are there in
 English?

- Option 1: count the word entries in a dictionary
- OED: 600,000
- American Heritage (3 ${ }^{\text {rd }}$ edition): 200,000
- Actually counting lemmas not wordforms
- Option 2: estimate from a corpus
- Switchboard (2.4 million wordform tokens): 20,000 wordform types
- Shakespeare's complete works: 884,647 wordform tokens; 29,066 wordform types
- Brown corpus (1 million tokens): 61,805 wordform types \rightarrow 37,851 lemma types
- Brown et al. 1992: 583 million wordform tokens, 293,181 wordform types

How are they distributed?

rank in frequency list

Statistical Properties of Text

- The most frequent words in one corpus may be rare words in another corpus
- Example: "computer" in CACM vs. National Geographic
" Each corpus has a different, fairly small "working vocabulary"
These properties hold in a wide range of languages
- Zipf's Law relates a term's frequency to its rank
- frequency 1/rank
- There is a constant k such that freq * rank $=k$

Zipf's Law (Tom Sawyer)

Word	Freq.	Rank					
(f)	$f \cdot r$		Word	Freq. (f)	Rank (r)	$f \cdot r$	
the	3332	1	3332	turned	51	200	10200
and	2972	2	5944	you'll	30	300	9000
a	1775	3	5235	name	21	400	8400
he	877	10	8770	comes	16	500	8000
but	410	20	8400	group	13	600	7800
be	294	30	8820	lead	11	700	7700
there	222	40	8880	friends	10	800	8000
one	172	50	8600	begin	9	900	8100
about	158	60	9480	family	8	1000	8000
more	138	70	9660	brushed	4	2000	8000
never	124	80	9920	sins	2	3000	6000
Oh	116	90	10440	Could	2	4000	8000
two	104	100	10400	Applausive	1	8000	8000

Zipf's Law

- Useful as a rough description of the frequency distribution of words in human languages
- Behavior occurs in a surprising variety of situations
- English verb polysemy
- References to scientific papers
- Web page in-degrees, out-degrees
- Royalties to pop-music composers

Topics for today

- Today
- Introduction to generative models of language
» What are they?
» Why they're important
» Issues for counting words
»Statistics of natural language
»Unsmoothed n -gram models

Models of word sequences

- Simplest model
- Let any word follow any other word
» P (word1 follows word2) = 1/\# words in English
- Probability distribution at least obeys actual relative word frequencies
» $P($ word1 follows word2 $)=$
occurrences of word1 / \# words in English
- Pay attention to the preceding words
- "Let's go outside and take a []"
» walk
very reasonable
» break quite reasonable
» lion
less reasonable
- Compute conditional probability P (walk| let's go...)

Probability of a word sequence

- $P\left(w_{1}, w_{2}, \ldots, w_{n-1}, w_{n}\right)$

$$
\begin{aligned}
P\left(w_{1}^{n}\right) & =P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}^{2}\right) \ldots P\left(w_{n} \mid w_{1}^{n-1}\right) \\
& =\prod_{k=1}^{n} P\left(w_{k} \mid w_{1}^{k-1}\right)
\end{aligned}
$$

- Problem?
- Solution: approximate the probability of a word given all the previous words...

N-gram approximations

- Bigram model
$P\left(w_{n} \mid w_{1}^{n-1}\right) \approx P\left(w_{n} \mid w_{n-1}\right)$
$P\left(w_{1}^{n}\right) \approx \prod_{k=1}^{n} P\left(w_{k} \mid w_{k-1}\right)$
- Trigram model
- Conditions on the two preceding words
- N-gram approximation
$P\left(w_{1}^{n}\right) \approx \prod_{k=1}^{n} P\left(w_{k} \mid w_{k-N+1}^{k-1}\right)$
- Markov assumption: probability of some future event (next word) depends only on a limited history of preceding events (previous words)

Bigram grammar fragment

- Berkeley Restaurant Project

eat on	.16	eat Thai	.03
eat some	.06	eat breakfast	.03
eat lunch	.06	eat in	.02
eat dinner	.05	eat Chinese	.02
eat at	.04	eat Mexican	.02
eat a	.04	eat tomorrow	.01
eat Indian	.04	eat dessert	.007
eat today	.03	eat British	.001

- Can compute the probability of a complete string
$-P(I$ want to eat British food $)=P(I \mid<s>) P($ want $\mid I)$
P (to|want) P (eat|to) P (British|eat) P (food|British)

Training N-gram models

- N-gram models can be trained by counting and normalizing
- Bigrams

$$
P\left(w_{n} \mid w_{n-1}\right)=C\left(w_{n-1} w_{n}\right) / C\left(w_{n-1}\right)
$$

- General case...
- An example of Maximum Likelihood Estimation (MLE)
» Resulting parameter set is one in which the likelihood of the training set T given the model M (i.e. $P(T \mid M)$) is maximized.

Bigram counts

	I	want	to	eat	Chinese	food	lunch
I	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

- Note the number of 0's...
- Will look soon at improvements to MLE for dealing with this sparse data problem.

Accuracy of N -gram models

- Accuracy increases as N increases
- Train various N -gram models and then use each to generate random sentences.
- Corpus: Complete works of Shakespeare
» Unigram: Will rash been and by I the me loves gentle me not slavish page, the and hour; ill let
» Bigram: What means, sir. I confess she? Then all sorts, he is trim, captain.
» Trigram: Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
" Quadrigram: They say all lovers swear more performance than they are wont to keep obliged faith unforfeited!

Strong dependency on training data

- Trigram model from WSJ corpus
- They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

