# Mostly-Unsupervised Statistical Segmentation of Japanese: Applications to Kanji

Rie Kubota and Lillian Lee Cornell University

# Iananese I anguage

- 3 Types of Characters
  - kanji, hiragana, katakana
  - Are used within the same document, sentence,
     etc. (helps find <60% word boundaries)</li>
  - The latter 2 often represent sounds (like English characters)

### Japanese NLP

- Words/Characters are unspaced, so segmentation is an essential first step
- Current methods employ:
  - Pre-existing lexicon
  - Pre-existing grammar
  - Pre-segmented data
- English parallel: "theyouthevent"

# Kanji

- Are often:
  - Domain terms or Proper nouns (unknown word problem, important for IR)
  - Compound nouns (POS doesn't help)
- >3 characters are often >1 word

| Sequence length   | # of characters | % of corpus |
|-------------------|-----------------|-------------|
| 1 - 3 kanji       | 20,405,486      | 25.6        |
| 4 - 6 kanji       | 12,743,177      | 16.1        |
| more than 6 kanji | 3,966,408       | 5.1         |
| Total             | 37,115,071      | 46.8        |

Figure 1: Statistics from 1993 Japanese newswire (NIKKEI), 79,326,406 characters total.

### What's Coming in this Paper?

- Use of statistical analysis only, no language
- No rules specific to Japanese
- Requires very few (>=5) labeled training examples
- Requires large amounts of unsegmented data
- For long kanji strings, performance rivals current morphological models

#### How it Works



Figure 2: Collecting evidence for a word boundary – are the non-straddling n-grams  $s_1$  and  $s_2$  more frequent than the straddling n-grams  $t_1$ ,  $t_2$ , and  $t_3$ ?

Is 
$$[\#(s_i) > \#(t_i)]$$
 ?

Calculates n-gram frequency over training corpus

### How it Works (N=4)

Is 
$$[\#(s_i) > \#(t_j)]$$
?

ABCDWXYZ

There are 5 4-grams in this sequence. With grouping, there are  $2 \times 3 = 6$  greater-than expressions to evaluate

#### How it Works

Select which integers  $n \in N$ , for calculations of n-grams, do math, then determine word boundaries.

$$v_n(k) = \frac{1}{2(n-1)} \sum_{i=1}^{2} \sum_{j=1}^{n-1} I_{>}(\#(s_i^n), \#(t_j^n))$$

Then, we average the contributions of each n-gram order:

$$v_N(k) = \frac{1}{|N|} \sum_{n \in N} v_n(k)$$

After  $v_N(k)$  is computed for every location, boundaries are placed at all locations  $\ell$  such that either:

- $v_N(\ell) > v_N(\ell-1)$  and  $v_N(\ell) > v_N(\ell+1)$  (that is,  $\ell$  is a local maximum), or
- $v_N(\ell) \ge t$ , a threshold parameter.



Figure 3: Determining word boundaries. The X-Y boundary is created by the threshold criterion, the other three by the local maximum condition.

# **Experimental Methods**

- Data from 150 MB Nikkei newswire 1993
- Pick 5 Held-out sets. Each...
  - 50 random chosen kanji sequences of length=10 in length (12 on avg)

• Annotate held-out sets. Divide each into a parameter-training (50) and test (450) set



### Segmenting Rules

- Word level
  - 1 word: (prefix+word+suffix)
- Morpheme level
  - 3 words: (prefix)(word)(suffix)

[小学校] [屋内] [ 運動] [場] ] [建設]

• 3 people had 98.42% agreement, all disagreement at morpheme level

#### Methods

- Morphological algorithms to compare to:
  - have access to lexicons of size 115,000 and 231,000.
  - used training data by adding it to their lexicons
- Parameters for the current method

N = power set 
$$\{2-6\}$$
  
1 = .05k | 0 <= k <= 20

#### **Evaluation**

- Precision: "percentage of proposed brackets that exactly match word-level brackets in the annotation"
  - = (# brackets right)/(#brackets proposed)
- Recall: "percentage of word-level annotation brackets that are proposed by the algorithm
  - = (# brackets right)/(#actual brackets)
- F-measure = 2PR / (P + R)

# Segmentation Results



Figure 4: Word accuracy. The three rightmost groups represent our algorithm with parameters tuned for different optimization criteria.



Figure 5: Morpheme accuracy.

### Incompatible? Use New Metrics

- Crossing Bracket "a proposed bracket that overlaps but is not contained within an annotation bracket"
- Morpheme Dividing Bracket "subdivides a morpheme level annotation bracket"
- Compatible Brackets neither of the above
- All-Compatible Brackets sequence ratio of all correct

| [[data][base]][system] (annotation brackets) |        |          |                           |                   |  |  |  |
|----------------------------------------------|--------|----------|---------------------------|-------------------|--|--|--|
| Proposed segmentation                        | word   | morpheme | compatible-bracket errors |                   |  |  |  |
|                                              | errors | errors   | crossing                  | morpheme-dividing |  |  |  |
| [data][base] [system]                        | 2      | 0        | 0                         | 0                 |  |  |  |
| [data] [basesystem]                          | 2      | 1        | 1                         | 0                 |  |  |  |
| [database] [sys][tem]                        | 2      | 3        | 0                         | 2                 |  |  |  |

Figure 6: Examples of word, morpheme, and compatible-bracket errors. The sequence "data base" has been annotated as "[[data][base]]" because "data base" and "database" are interchangeable.

#### Results with new Metrics



Figure 7: Compatible brackets and all-compatible bracket rates when word accuracy is optimized.

#### Discussion – Manual Effort

- Required Annotation
  - only the 50-sequence held-out sets (42min)
  - other methods require 1000-190,000 sentences
- Authors had some success with as few as only 5 sequences (4min)

|           | Juman5 vs. Juman50 | Our50 vs Juman50 | Our5 vs. Juman5 | Our5 vs. Juman50 |
|-----------|--------------------|------------------|-----------------|------------------|
| precision | -1.04              | +5.27            | +6.18           | +5.14            |
| recall    | -0.63              | <b>-</b> 4.39    | -3.73           | -4.36            |
| F-measure | -0.84              | +0.26            | +1.14           | +0.30            |

Figure 8: Relative word accuracy as a function of training set size. "5" and "50" denote training set size before discarding overlaps with the test sets.

### My Thoughts

- Purely Statistical Models are New
- This could work for other languages (Chinese), but would it do English well?
- The '>' heuristic: "conjecture that using absolute differences may have an adverse effect"

### Summary

- Purely Statistical Model
  - No lexicon or grammar
- Good Performance
  - Almost as good as, if not better than, other systems
- New Metrics