Automatic Labeling of Semantic Roles

Daniel Gildea & Daniel Jurafsky

Task

- Train using automatically derived parses
- Identifying Frame Element Boundaries
 - Use parse tree to extract features
 - Find Probability of constituent being an argument
- Labeling Elements
 - Argument labels are specific to the frame and the predicate

Frame: Statement Frame Elements: Speaker Addressee Message Topic Medium

Labeling Frame Elements, Features

- Head
- Target: The predicate in the sentence
- Phrase Type: NP, VP, PP, S etc.
- Grammatical Function: Subject/Object (only applied to NP)
- Voice: Active/Passive
- Position: before/after predicate

Methodology

- Parse training set using Collins (1997) parser, to extract features
- Find most probable assignment of roles r given features
- P(r | pt, gf, voice, pos, h, t) is sparse, so approximate using reduced feature sets

Reduced Feature Sets

- Coverage: % of cases where feature set is available
- Accuracy: % of correct labelings where feature set is available
- Performance: Product of Coverage and Accuracy

Distribution	Coverage	Accuracy	Performance
P(r t)	100%	40.9%	40.9%
P(r pt,t)	92.5	60.1	55.6
P(r pt,gf,t)	92.0	66.6	61.3
P(r pt, position, voice)	98.8	57.1	56.4
P(r pt, position, voice, t)	90.8	70.1	63.7
P(r h)	80.3	73.6	59.1
P(r h,t)	56.0	86.6	48.5
P(r h,pt,t)	50.1	87.4	43.8

No feature set beats any other in both accuracy and coverage.

Combining Probabilities

 Development Set All methods are within the margin of error (1%) Test Set Performance is less by 3.5% 	Combining Method Linear Interpolatio Geometric Mean Backoff, linear inte Backoff, geometric Baseline: Most com	d on erpolation e mean mmon role	Correct 79.5% 79.6 80.4 79.6 40.9
Is the margin of error really 1% ?	Development Set Test Set	Linear Backoff 80.4% 76.9	Baseline 40.9% 40.6%

Grammatical Function Vs. Position

Distribution	Coverage	Accuracy	Performance
P(r pt,gf,t)	92.0	66.6	61.3
P(r pt, position, voice, t)	90.8	70.1	63.7
P(r pt,t)	92.5	60.1	55.6

Feature Set	Performance
gf, h, pt, t	79.2
pos, voice, h, pt, t	80.5
h, pt, t	76.3

Identifying Frame Elements

- Features
 - Head
 - Path
 - Target
- Feature Sets for Obtaining Probabilities
 - Path
 - Path, Target
 - Head, Target

Performance, max F~.73

Partial Overlap

Type of Overlap	Identified Constituents	Number
Exactly Matching Boundaries	66%	5421
Identified constituent entirely within true frame element	8	663
True frame element entirely within identified constituent	7	599
Partial overlap	0	26
No match to true frame element	13	972

- Allowing one inside the other increases precision by 15%
- Perhaps they should have included the fraction of true frame elements which were not identified as a constituent by the parser.

Shallow Semantic Parsing Using Support Vector Machines

Dan Jurafsky, Smaeer Pradhan, Wayne Ward, Kadri Hacioglu, and James Martin

PropBank Arguments

- Differs from FrameNet
 - Arguments NOT specific to frame
 - More training data/applicability
- Core Arguments:
 - proto-Agent
 - proto-Patient, etc.
- Adjunctive Arguments
 - Location
 - Temporal

Tasks

- Argument Identification:
 - Use single SVM to distinguish between nulls and non-nulls
- Argument Classification
 - Use an SVM for each argument classification, and pick one with greatest confidence
- Identification & Classification

Old Features (G&J 2002)

- Predicate (or Target)
- Path
- Phrase Type
- Position
- Voice
- Head Word
- Verb Subcatagorization
 - CFG rule used to expand parent of verb

Baseline Performance (old features)

Classes	Task	P (%)	R (%)	F_1	A (%)
All Args	Id. Classification Id. + Classification	90.9 - 83.3	89.8 - 78.5	90.4 - 80.8	87.9
Core Args	Id. Classification Id. + Classification	94.7 - 88.4	90.1 - 84.1	92.3 - 86.2	91.4

New Features

- Named Entities
- Head Word POS
- Verb Clustering
- Partial Path
- Verb sense information (fine)
- Modified Head of prep. Phrases
- First & Last Word/POS in Constituent
- Ordinal constituent position (concat. w/type)
- Constituent Tree Distance
- Constituent Relative Features

New Features

- Improvement in classification and identification from each feature
- Most features improve at least one task above level of significance

Features	Class	Ar	GUMEN'	t ID		
	Acc.					
		Р	R	F ₁		
Baseline	87.9	93.7	88.9	91.3		
+ Named entities	88.1	-	-	-		
+ Head POS	*88.6	94.4	90.1	*92.2		
+ Verb cluster	88.1	94.1	89.0	91.5		
+ Partial path	88.2	93.3	88.9	91.1		
+ Verb sense	88.1	93.7	89.5	91.5		
+ Noun head PP (only POS)	*88.6	94.4	90.0	*92.2		
+ Noun head PP (only head)	* 89.8	94.0	89.4	91.7		
+ Noun head PP (both)	* 89.9	94.7	90.5	*92.6		
+ First word in constituent	*89.0	94.4	91.1	*92.7		
+ Last word in constituent	*89.4	93.8	89.4	91.6		
+ First POS in constituent	88.4	94.4	90.6	*92.5		
+ Last POS in constituent	88.3	93.6	89.1	91.3		
+ Ordinal const. pos. concat.	87.7	93.7	89.2	91.4		
+ Const. tree distance	88.0	93.7	89.5	91.5		
+ Parent constituent	87.9	94.2	90.2	*92.2		
+ Parent head	85.8	94.2	90.5	+92.3		
+ Parent head POS	*88.5	94.3	90.3	*92.3		
+ Right sibling constituent	87.9	94.0	89.9	91.9		
+ Right sibling head	87.9	94.4	89.9	*92.1		
+ Right sibling head POS	88.1	94.1	89.9	92.0		
+ Left sibling constituent	*88.6	93.6	89.6	91.6		
+ Left sibling head	86.9	93.9	86.1	89.9		
+ Left sibling head POS	*88.8	93.5	89.3	91.4		
+ Temporal cue words	*88.6	-	-	-		
+ Dynamic class context	88.4	-	-	-		

Improvements in F Score, (identification & tagging)

- Disallow Overlaps
 - Choose constituent with greater confidence
 - +0.8% on all arguments
- Argument sequence information + no overlaps
 - Predicate specific trigram model over argument types
 - +2% on core arguments
- Using all new features with significant improvement + no overlaps + sequence info
 - All new features with significant improvement
 - +5.9% on all arguments, +2.7% on core arguments

Best Performance

(all significant improvements)

Classes	Task	Hand-corrected parses			
		P	R	F_1	A
		(%)	(%)		(%)
All	Id.	95.2	92.5	93.8	
ARGS	Classification	-	-	-	91.0
	Id. + Classification	88.9	84.6	86.7	
Core	Id.	96.2	93.0	94.6	
ARGS	Classification	-	-	-	93.9
	Id. + Classification	90.5	87.4	88.9	

Improvement

- 2-3% in classification
- 2-4% in identification
- 3-6% in combined task

Other Comparisons

(all arguments)

- Automatic Parses
 - -7.8% in identification (F score)
 - -1% in tagging (accuracy)
 - -7.3% in id+tagging (F score)
- New Data, hand tagged
 - +2.2% in id
 - +2% in tagging
 - +2.7% in id+tagging

- Different Corpus
 - AQUAINT, NYTimes (similar to WSJ)
 - -20.3% in identification!
 - -7.2% in tagging
 - -23.4% in id+tagging!

Comparison of Coverage

	Propbank		Aquaint	
	Args	Non-args	Args	Non-args
Predicate & Path	87.60	2.91	62.11	4.66
Predicate & Head	48.9	26.55	30.26	17.41

Comparison to Other Systems

- Gildea & Palmer (2002)
 - Probabilities with back-off and interpolation
- Surdeanu et. al. (I, II)
 - Decision Tree
- Gildea & Hockenmaier
- Chen & Rambow (I, II)
 - Decision Tree

Classification

Classifier	Accuracy (%)
SVM	88
Decision Tree (Surdeanu et al., 2003)	79
Gildea and Palmer (2002)	77

Table 11: Argument classification using same features but different classifiers.

Classes	System	Hand	Automatic
		Accuracy	Accuracy
All Args	SVM G&P Surdeanu System II Surdeanu System I	91 77 84 79	90 74 -
Core Args	SVM C&R System II C&R System I	93.9 93.5 92.4	90.5 - -

Table 13: Argument classification

Identification

Classes	System	Hand			ystem Hand Automatic			tic
		P	R	F ₁	P	R	F ₁	
All Args	SVM Surdeanu System II Surdeanu System I	95 - 85	92 - 84	94 89 85	89 - -	83 - -	86 - -	

Table 12: Argument identification

Both Tasks

Ī	Classes	System	Hand			Automatic		
l			Р	R	F ₁	Р	R	F ₁
	All Args	SVM G&H System I G&P	89 76 71	85 68 64	87 72 67	84 71 58	75 63 50	79 67 54
	Core Args	SVM System G&H System I C&R System II	90 82 -	87 79 -	89 80 -	86 76 65	78 73 75	82 75 70

Table 14: Identification and classification

Feature Analysis

Features	Accuracy (%)
All All except Path All except Phrase Type All except HW and HW-POS All except All Phrases All except Predicate All except HW and FW and LW-POS	91.0 90.8 90.7 *83.6 *82.4 *75.1
Path, Predicate Path, PhraseType HeadWord Path	74.4 47.2 37.7 28.0

Table 9: Performance of various feature combinations on the task of argument classification.

Conclusion

- Total system performs well
 - Final F score w/automatic parses on combined task: 79.4%
 - SVM's work well
 - Lots of promising new features
 - Beats others
- Still need to work on
 - Analyzing features and feature "families"