

Introduce

- What is a part-of-speech tagger system?
 - A system that uses context to assign parts of speech to words.
- What is the requirements of POS system?
 - Robust
 - Efficient
 - Accurate
 - Tunable
 - Reusable

Introduce

- What is the advantage of the POS system proposed in this paper?
 - Few resource (only a lexicon and some unlabeled training text)
 - Facilitate higher level analysis
 - Running in linear complexity

Brief of Methodology

- Approaches used in building text taggers
 - Rule-based approach (TAGGIT)
 - Rule-based approach with finite-state machines
 - Statistical methods (Markov model)

Brief of Methodology

- Types used in training
 - Make use of a tagged training corpus
 - Manually tag a small amount of text
 - Train a partially accurate model
 - Correct the tag in the text
 - Retrain the model
 - Without using tagged training corpus
 - Forward-Backward algorithm (Hidden Markov Model)

Hidden Markov Modeling

• Definision

- HMM = (S, X, A, B, Π)
 - State Sequence: $\underline{S = \{S1, S2, ..., S_T\}}$ (Si \in W, 1 \leq i \leq T)
 - Observation Sequence: $X = \{X1, X2, ..., X_T\}$ ($1 \le i \le T$)
 - Transfer Probability: <u>A = {aij}</u> (1≤ i, j ≤ N) where aij is the probability of moving from state i to state j
 Output Probability: <u>B = {bjk}</u> (1≤ j ≤ N, 1≤ k ≤ M, M=|W|))
 - where bjk is the probability of generating Sk at state j
 - $\Pi = \{\Pi i\}$ where Π i is the probability of starting in state i

Hidden Markov Modeling

- Assumption for HMM
 - Assumption 1: Markov assumption-- probability of the occurrence of word S_i at time t depends only on occurrence of word S_{i-1} at time t-1. P(S1, S2,...Sn) can be estimated as ∏ⁿ_{i=1}P(Si|Si-1)
 - Assumption 2: Output independent assumption--for all i, the S_i, X_i (observation sequence) are independent of all S_j and X_j, if i ≠ j.
 P(X1,...Xn|S1,...Sn) can be estimated as ∏ⁿ_{i=1}P(Xi|Si)

Hidden Markov Modeling

- Before going on, let's see a small example
 - Let's say there are three types of weather: sunny [♣]→, rainy [↓], and foggy [▲]→.

 - Task: ask about the weather outside based on the observations.

Hidden Markov Modeling

• Example continue

- Finding the probability of a certain weather S∈ {sunny, Rainy, foggy} can only be based on the observation Xi (whether umbrella is carried). This conditional probability P(Si|Xi) can be rewritten according to Bayes's rule:
- P(Si|Xi) = P(Xi|Si)P(Si)/P(Xi)
- Because Xi is a known observation sequence, P(Xi) = 1, then $P(Si|Xi) = P(Xi|Si)P(Si) = \prod_{i=1}^{n} P(Si|Si-1) \prod_{i=1}^{n} P(Xi|Si)$

Hidden Markov Modeling

- Example continue
 - Task: Calculate the likelihood for the weather on these three days to have been {S1=sunny, S2=foggy, S3=sunny} and the person comes in without an umbrella (F).
 - P(S1=sunny,S2=foggy,S3=sunny|X1=F, X2=F, X3=F)

Today's weather	Tomorrow's weather		
	۰	R	
۰	0.8	0.05	0.15
*	0.2	0.6	0.2
	0.2	0.3	0.5

Weather	Probability of umbrella
Sunny	0.1
Rainy	0.8
Foggy	0.3

Hidden Markov Modeling

- Example continue
- P(S1=sunny,S2=foggy,S3=sunny|X1=F, X2=F, X3=F)
- = P(X1=F|S1=sunny) * P(X2=F|S2=foggy) * P(X3=F|S3=sunny) *P(S3=sunny|S2=foggy)* P(S2=foggy|S1=sunny) * P(S1=sunny)
- = 0.9 * 0.7 *0.9 * 1/3 * 0.15 * 0.2
- = 0.0057

So, The probability of {sunny, foggy, sunny} is 0.0057

Hidden Markov Modeling

- HMM in speech recognition
 - Task
 - \bullet Estimate the model parameters A, B and Π from a training set
 - Find the most likely sequence of words W given some acoustic input.

Hidden Markov Modeling

HMM in speech recognition

- Probability of the entire sequence

- Forward probabilities: $\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(S_{t+1}) \quad 1 \le t \le T-1,$
- Backward probabilities: $\beta_t(i) = \sum_{i=1}^N a_{ij} b_j(S_{t+1}) \beta_{t+1}(j)$ $(\leq t \leq T-1,)$
- $\mathsf{P} = \sum_{i} \alpha_{t}(i) \ \beta_{t}(i) = \sum_{j} \alpha_{t+1}(j) \ \beta_{t+1}(j)$ = $\sum_{i} \alpha_{t}(i) \ (\sum_{j} a_{ij}b_{j}(S_{t+1}) \ \beta_{t+1}(i)) = \sum_{j} (\sum_{i} \alpha_{t}(i) \ a_{ij}b_{j}(S_{t+1}))\beta_{t+1}(j)$ = $\sum_{j}^{N} \sum_{\alpha_{t}(i)a_{ij}b_{j}(S_{t+1})\beta_{t+1}(j)}^{N}$

Hidden Markov Modeling

HMM in speech recognition



Hidden Markov Modeling

• Viterbi Algorithm

To find the most probable such sequence we start by defining $\phi_1(i) = \pi_i b_i(S_1)$ for $1 \le i \le N$ and then perform the recursion $\phi_t(j) = \max_{1 \le i \le N} [\phi_{t-1}(i)a_{ij}]b_j(S_t)$ (6)

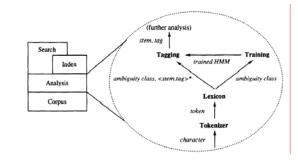
 $\psi_t(j) = \max_{1 \le i \le N} {}^{-1} \phi_{t-1}(i)$

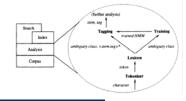
and

Notice: According to other reference book, $\Psi_t(j) = \max^{-1}[\phi_{t-1}(i) a_{ij}]$ rather than $\Psi_t(j) = \max^{-1}\phi_{t-1}(i)$

Architecture

Tagger Modules in System Context





Architecture

• Five components

- Term: a word stem annotated with part-of-speech
- Corpus: provides text in a generic manner
- Analysis: extracts terms from the text
- Index: stores term occurrence statistics
- Search: utilizes statistics to resolve queries

Architecture

- Tokenizer vs. Lexicon Implementation
 - Two basic classes of Tokenizer
 - Sentence boundary
 - Word
 - Other classes: numbers, paragraph boundaries
 - Three Stage of Lexicon
 - Construct lexicon manually
 - Guess ambiguity classes automatically (suffix)
 - Use default ambiguity classes

Evaluation

- Time Complexity: O(kTN)
- Space Complexity: T+2N(T+N+M+1)
- Accuracy: 96%
- Robust: fragments and ungrammaticalities
- Tunable: support tuning itself

(various tagset, lexicon / empirical and prior information)

Application

- Phrase Recognition
- Word Sense Disambiguation
- Grammatical Function Assignment

Reference

 Barbara Resch, Hidden Markov Models--A Tutorial for the Courses Computational Intelligence, <u>http://www.igi.tugraz.at/lehre/CI</u>

