Learning Extraction Patterns for Subjective Expressions

By Ellen Riloff and Janyce Wiebe

Presented by: Joe Dillman

Motivations

- IE systems should be able to discern facts and non-facts
- Annotated data difficult to find
- Believed that much data needed to train subjectivity classifers
- Like a way to automatically generate annotated corpora from small amounts of data using bootstrapped process

Bootstrapping Process

HP-Subj Classifier

- High-precision classifier used to identify subjective sentences
- Subjectivity classes:
 - Strongly subjective seldom used without subjective meaning
 - Weakly subjective commonly has subjective and objective use
- Identifies as subjective if 2 or more strongly subjective clues found
- P=91.5%, R=31.9%

HP-Obj Classifier

- High-precision classifier for objective sentences
- Identification heuristic:
 - No strongly subjective clues
 - At most one weakly subjective clue in previous, current and next sentence combined
- P=82.6%, R=16.4%

Learning Subjective Patterns

- Use Autoslog-TS
 - Relevant text: subjective sentences
 - Irrelevant text: objective sentences
- Two phases of processing as before:
 - Phase 1: Apply syntactic patterns to training corpus
 - Phase 2: Apply learned patterns to training corpus and rank

Autoslog-TS Syntactic Templates

SYNTACTIC FORM	EXAMPLE PATTERN
<subj> passive-verb</subj>	<subj> was satisfied</subj>
<subj> active-verb</subj>	<subj> complained</subj>
<subj> active-verb dobj</subj>	<subj> dealt blow</subj>
<subj> verb infinitive</subj>	<subj> appear to be</subj>
<subj> aux noun</subj>	<subj> has position</subj>
active-verb <dobj></dobj>	endorsed <dobj></dobj>
infinitive <dobj></dobj>	to condemn <dobj></dobj>
verb infinitive <dobj></dobj>	get to know <dobj></dobj>
noun aux <dobj></dobj>	fact is <dobj></dobj>
noun prep <np></np>	opinion on <np></np>
active-verb prep <np></np>	agrees with <np></np>
passive-verb prep <np></np>	was worried about <np></np>
infinitive prep <np></np>	to resort to <np></np>

- Removal of two rules:
 - passive-verb <dobj>
 - gerund <dobj>

Autoslog-TS: New ranking function

Conditional probability:

 $Pr(subjective \mid pattern_i) = \frac{subjfreq(pattern_i)}{freq(pattern_i)}$

- subjfreq(pattern_i) = frequency of pattern_i in subjective training texts
- freq(pattern_i) = frequency of pattern_i in all training sentences

Autoslog-TS: New ranking function

- Choose two threshold parameters: θ_1 , θ_2
- Choose extraction patterns where:
 - $\Box freq(pattern_i) \geq \theta_1$
 - $\square Pr(subjective \mid pattern_i) \geq \theta_2$

Interesting Generated Patterns

PATTERN FREQ %SUB	J FREQ-#
<subj> was asked 11 100%</subj>	of times
<subj> asked 128 63%</subj>	pattern
<subj> is talk 5 100%</subj>	appears in
talk of <np> 10 90%</np>	training
<subj> will talk 28 71%</subj>	data
<subj> put an end 10 90%</subj>	– uala
<subj> put 187 67%</subj>	%SUBJ –
<subj> is going to be 11 82%</subj>	nercentage
<subj> is going 182 67%</subj>	- of times
was expected from <np> 5 100%</np>	
<subj> was expected 45 42%</subj>	seen in
<subj> is fact 38 100%</subj>	subj.
fact is <dobj> 12 100%</dobj>	sentences

Presence of noun "fact" highly correlated with <u>subjective expression</u>!

Results: Learned Patterns Evaluation

Precision from 71% to 85%

Results: Modifying HP-Subj

- Modify HP-Subj to use extraction patterns
 - Include originally labeled sentences
 - Add unlabeled sentence if:
 - Contains 2 or more learned patterns
 - Contains 1 original clue and at least 1 pattern
- Results:

HP-Subj H		HP-Sub	HP-Subj w/Patterns	
Recall	Precision	Recall	Precision	
32.9	91.3	40.1	90.2	

Concluding Remarks

- Bootstrapping process works to increase amount of labeled data
- Ranking function reduces need for human intervention
- Applications to extraction tasks
- "fact" ≠ fact