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Using relative frequencies as a way to estimate probabilities is
Joshua Goodman one example of the technique of Maximum Likelihood
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Why smoothing Iin Comparing Smoothing
language modeling? Techniques

Problem: what is the MLE for (the | burnish)? We now know that we need to apply smoothing to our
language model. But there are many smoothing techniques,
which one should we use?

If the bigram “burnish the” doesn’t appear in our training corpus

then P(the| burnish) = 0. But no word sequence should have

Previous only a small number of methods have been
0 probability, this can’t be right.

compared (usually 2) on a single corpus using a single
training data size.

Furthermore, MLE produces poor estimates when the counts are ] ]
non-zero but still small Goal of Chen and Goodman: An extensive comparison of
multiple smoothing technigues on various corpora on many
training sizes for both bigrams and trigrams. Also introduce

SO'UtiOﬂ: Smoothing two new smoothing techniques




Criteria for judging
smoothing techniques

Entropy(X): The expected number of bits needed to encode a
randomly drawn example from X. Informally, entropy can be
thought of as a mathematical measure of information or
uncertainty.

In general assign short encodings for more probable events
and longer encodings for less probable events. If we can
encode with fewer bits this implies less uncertainty and more
information

But what if we don’t know the probability distribution p that
generated some data? Use Cross Entropy
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Cross entropy is an upper bound on the entropy. For any model m:
H(p) <= H(p,m). Between two models m1 and m2 the more accurate model
will be the one with the lower cross-entropy.

A slightly more complex
technique

+

m Interpolation

Pinterp(wi|wi—1) = APMp(w;|wi_1)+(1— A) Pyr (w;)

Allows us to take into account the unigram probabilities.
Bigrams involving common words are assigned higher
probabilities

Smoothing techniques

m A simple smoothing technique: Add 1

c(wi—jw;) +1

Pyy(wilwioy) = w1+ 1V

We simply pretend that each unique bigram appears once more than it
actually did. We do this by adding one to each count before normalizing into

probabilities

|V| stands for vocabulary size, which is the total number of word types in
the language. Since we add one for each word type, we've effectively
added |V| bigrams starting with wi-1 to our corpus, so we must add |V|
when normalizing

Solves 0 bigram probability problem, but doesn’t work well in practice. Same
probability for (the | burnish) as (thou | burnish) if both originally had P(0).

Smoothing techniques
used In practice

m Additive Smoothing
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Instead of adding 1, we’'ll add delta. A problem with add1
smoothing, besides not taking into account the unigram
values, is that too much or too little probability mass is
moved to all the zeros by just arbitrarily choosing to add 1 to
everything. By adding delta we can fix this problem.




Jelinek and Mercer

Jelinek and Mercer Smoothing

m Use linear interpolation = Even with held-out interpolation or deleted
interpolation you never have enough data to train
Puserp(wilw} "1 41) = every lambda value.
Npimt P T3 40) +

(=gt ) Proverp(wilt; T 5) m Solution: Use bucketing

Intuition:use the lower order n-grams in combination with maximum BuEleEiiner Bl e afslai h h
likelihood estimation. The probability for ever n-gram is estimated using ® Bbucketing: Divide Into disjoint groups wnere eac

a (n-1)-gram. group is characterized independently through a set
of parameters and every group receives the same
Training of the lambdas should be done on data disjoint from the data used value. For Jelinkek and Mercer we divide into

to estimate maximum likelihood. Two methods for this. groups based on the count.
Held-out interpolation: Reserve a section of the training data for each.

Deleted interpolation: Rotate different parts of the training data for each and

then average the results

Good Turing Estimate Katz smoothing

m Not used directly for smoothing, but Katz smoothing on a trigram model
combined with other methods

States that an n-gram that occurs r times should be treated as if it has
occurred r* times. Nr is the number of n-grams that occur exactly r times
in the training data

Intuition: Combine Good-Turing with interpolation. Outperforms Good-
Turing by redistributing different probabilities to different unseen units.
(the | burnish) would have higher probability than (thou | burnish)
Models are defined recursively in terms of lower order models.

Intuition: Consider an n-gram that has occurred 0 times. When it does
occur it will be the first time we see this new N-gram. So the probability of
a zero frequency N-gram can be modeled by the probability of seeing an
N-gram for the first time. Good Turing builds on this intuition to allow us to
estimate the probability mass assigned to n-grams with lower counts by
looking at the number of n-grams with higher counts.




Church and Gale

U Combine Good-Turing estimate with bucketing.
U Like Kats models are defined recursively in terms of lower-order models

U4 Each n-gram is assigned to one of serveral buckets based on its frequency
predicted from lower-order models

. {u } {u} For instance, the value of this would
PRI WP  (otcrmine into which bucket a bigram falls

U Good Turing estimation is performed within each bucket

Novel Smoothing
techniques

+

m One count
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Alphas represents the number of counts being added to the distribution with
the new counts distributed as in the lower order distribution.

Good-Turing suggests that the number of these extra counts should be
proportional to the number of words with exactly one count in the given
distribution. Alpha is the number of words with one count plus some scaling
by constants.

a=7[m(wl)+ 06

Novel Smoothing
Techniques

m  Average-Count

Variation of Jelinek-Mercer, the criteria for bucketing has been changed.
Instead of bucketing based on the count, they bucket based on the
number of counts per non-zero element

Intuition: The less sparse the data the larger lambda should be. The
more accurate counts we have, the more trustworthy the n-gram is, and
the higher we can make lambda. The count propposed by Jelinek-
Mercer generally corresponds to less sparse distributions but ignores
the allocation of counts between words. The average number of counts
per word gives us a better correlation with sparseness than the total
count for all the words.

Data

m Used data from treebank and TIPSTER
corpora:

m Brown Corpus - Treebank

m Associated Press - TIPSTER

m Wall Street Journal - TIPSTER

m San Jose Mercury News —TIPSTER




Division of Data

m Three segments of held out data
m One segment of training data

m One held out segment used for
performance evaluation, other two for
optimizing parameters

Implementation

m Jelinek-Mercer Smoothing: 2 versions, that
differed by what data is used to train the
lambdas. One trained using held-out
interpolation and the other trained using
relaxed deleted interpolation.

m Average-Count: Identical to interp-held-out
except with the novel bucketing scheme

m New-one-count: Varies the constant
parameters that act on alpha for each n.

Implementation

Baseline Smoothing: Jelinek-Mercer where all
lambdas are equal to a single value for each n.
Additive Smoothing: Two version. Version 1 delta =
1. Version 2 delta allowed to vary.

Katz Smoothing: Use a different k for each n>1.
And smooth the unigram distribution with additive
smoothing

Church Gale Smoothing: Bucketing done similar to
Jelinek and Mercer. Had to extend the smoothing to
trigrams while original paper only described
bigrams. Some ambiguity here.

Parameter optimization

m Parameters were chosen to optimize the
cross-entropy.

m Searched only those parameters that were
found to affect performance significantly

m Optimal values searched for using Powell’s
search algorithm

m For Katz and church-gale parameter search
wasn’t done for training sets over 50,000
sentences due to resource constraints, but
were manually extrapolated




Results

_’_

m Poor performance from additive smoothing

Consistently strong performance from Katz and
interp-held-out.

Church-Gale performs poorly except on large
bigram training sets where it performs the best

Novel methods perform well across training set
sizes and are superior for trigram models.

One-count yields marginally worse performance
than average-count but is extremely easy to
implement.

Results

m Performance relatively consistent
across corpora but varies widely with
respect to training set size and n-gram
order

Results

m Interp-held-out significantly
outperforms interp-del-int, however
deleting larger chunks of words might
yield better performance

m Poor parameter settings can greatly
hurt the performance on Katz and
new-avg-count
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