
Empirical Methods in 
Information Extraction

By Claire Cardie

Presentation by Dusty Sargent

Background
Domain-specific task differs from more general 
problems studied so far
Summarizes important points in a text with respect to 
a target topic
Structures information for storage into database

Background (cont’d)
MUC (Message Understanding Conference) evaluates 
systems
Provides answer keys and texts for particular topic
Recall = (# correct slot fillers in output template) / 
(# of slot-fillers in answer key)
Precision = (# correct slot fillers in output template) 
/ (# of slot-fillers in output template)
Has been used in practical applications

Applications
Summarize medical records (test results, diagnoses, 
symptoms, etc.)
Extract information about terrorist activities from 
radio or television broadcasts
Keep records of corporate mergers and acquisitions
Build knowledge bases from information found in 
websites
Create job listings from web-based classified ads, 
job-search sites and newsgroups



Performance
State of the art systems reach 50% recall and 70% 
precision on complicated extraction problems
Can reach 90% precision and recall on the easiest 
extraction tasks
Human error rate also high for information extraction
Best systems have only twice error rate of human 
experts trained for same task
Still a lot of room for improvement
Time consuming development phase and cause of 
errors difficult to determine

Architecture
Traditional NLP approach with full syntactic and semantic analysis of input text
Less common simple approach with keyword matching and little linguistic analysis

Architecture (cont’d)
Tagging and tokenization: divide input into sentences 
and words, part-of-speech tag and disambiguation word 
senses
Sentence analysis: partial parse and tag with respect to 
semantic roles
Extraction: identify relevant entities and relations 
between them, specific to the domain
Merging: coreference resolution between extracted 
entities and events
Template generation: map extracted information into 
domain specific output format

Corpus-based Learning
Used for the underlying tasks of information 
extraction
Can apply to preliminary stages of the architecture
Difficulty in finding enough training data for all the 
levels of analysis required
Expensive to retrain the system for each domain to 
which it must be applied
Standard NLP learning techniques difficult to apply to 
later stages: learning extraction patterns, coreference
resolution, template generation
New training corpus needed for each task; difficult to 
learn general patterns from answer keys



Learning Extraction Patterns
Use general pattern matching techniques for 
extraction phase
Acquire good extraction patterns from training corpus 
with empirical methods
Similar to Candidate Elimination Algorithm
Extraction patterns ordered from general to specific, 
need balance between the two
Need general patterns to apply to more than one 
case
Patterns must be specific enough that they do not 
apply in the wrong context

AutoSlog
One of earliest systems for learning extraction patters, by Lehnert and Riloff (1992 –
1993)
Learns “concept nodes”, domain-specific semantic frames, maximum of one slot per 
frame

Concept nodes used with CIRCUS parser for the final extraction task

Concept Node Definition
Concept: the concept to be extracted, e.g. Damaged-
Object
Trigger: word that activates pattern
Position: syntactic position where the concept is likely 
to be found in the sentence
Constraints: constraints on argument at “Position”
necessary for extraction to occur; can be hard or soft
Enabling Conditions: constraints on linguistic context 
of trigger word

Example Application
Example: “...the twister occurred at approximately 7:15pm and 
destroyed two mobile homes.”
Concept is Damaged-Object
Concept node is activated by trigger word “destroyed”
Enabling Condition: “destroyed” occurs in active voice
Position: direct-object of verb “destroyed”
Constraints: direct-object of “destroyed” must be a physical 
object
Result: “two mobile homes” is extracted to fill the Damaged-
Object slot of the concept node



Concept Node Algorithm
Concept nodes applied during partial parsing phase 
of the extraction system
When trigger word encountered, check for enabling 
conditions
If met, extract phrase in appropriate position
Test phrase for constraints
If constraints met, label phrase as instance of the 
concept type

Learning Concept Nodes
Learning algorithm specific to domain
Requires training text with noun phrases annotated 
with concept type, or uses answer keys
Uses partial parse and small set of linguistic patterns 
to help learn concept nodes
New version, AutoSlog-TS, only needs to be given 
texts marked as relevant or irrelevant to the domain 
of the extraction task

Learning Algorithm
Find sentence in which target noun phrase occurs in 
training data
Parse the sentence with partial parser
Apply the list of linguistic patterns in order
If a pattern linguistic pattern applies to the sentence, 
create a concept node definition from the appropriate 
elements of the sentence

Learning Example
“Witnesses confirm that the twister occurred without warning at approximately 
7:15pm and destroyed two mobile homes(Damaged_Object)”.
Target noun phrase is “two mobile homes”, marked in training corpus as an 
instance of the concept Damaged_Object, or found in the Damaged_Object field 
in the answer key
Step 1: find the above sentence in the training corpus, in which the target noun 
phrase occurs
Step 2: parser determines that “two mobile homes” was the direct object of 
active verb “destroyed” in the third clause
Step 3: match third clause to the following linguistic pattern: 
<active-voice-verb> followed by <target-np> = <direct-object>
Step 4: generate the concept node seen previously from matched constituents, 
context, concept type, and semantic class



AutoSlog-TS
Improved version needs only relevant and irrelevant 
texts as training data
Adapts AutoSlog to use statistical techniques
Nearly matches performance of AutoSlog on MUC 4 
extraction task, using a fraction of the human effort
Scans corpus once and generates an extraction 
pattern for every noun phrase
Scans again and ranks extraction patterns according 
to some ranking function

PALKA
Learns extraction patterns similar to concept nodes 
using a different method
Uses a concept hierarchy, predefined set of trigger 
words, and semantic class lexicon
Concept hierarchy contains generic semantic case 
frames for each concept
Looks for sentences in corpus containing keywords, 
and fills case frame slots using semantic class 
information

CRYSTAL
Uses more complex patterns in the form of semantic 
case frames
Triggers are detailed descriptions of linguistic context 
of target noun phrase
Can test for specific sequences of words or types of 
related constituents
Learns patterns by generalizing input examples until 
an error threshold is reached
Begin by generating most specific possible patterns 
and gradually relax constraints

Other Systems
LIEP recognizes relationships between two target 
noun phrases that fill slots in the output template
RAPIER generalizes from an input set of patterns, but 
operates at word level, unlike CRYSTAL
Existing methods only work well at extracting noun 
phrases
Few methods have been evaluated under similar 
conditions
Difficult to compare and determine advantages of 
different approaches



Coreference Resolution
The most difficult pre-processing task for information 
extraction systems
Less research for coreference resolution and template 
generation than for learning extraction patterns

Coreference Resolution
Different methods needed to handle each linguistic 
type of reference
Coreference resolution is the major weak point of 
most modern information extraction systems
Many systems use heuristics, but difficult to cover all 
possible cases
Often, heuristics require detailed parses, which most 
extraction systems do not provide
Accumuated errors from earlier parsing and variety of 
domains adds to difficulty

Empirical Methods
Do not need to make specific learning methods for 
this task as with learning extraction patterns
Can cast coreference resolution as a classification 
problem and use existing inductive learning methods
Given two noun phrases and their contexts, classify 
as positive if they refer to the same object, negative 
if they do not
Use inductive learning to automatically derive 
coreference resolution heuristics

General Approach
Step 1: link all coreferential phrases via annotations 
in the training corpus
Step 2: create positive and negative training 
examples from all possible pairs in the corpus
Step 3: annotate examples with features relating to 
their contexts and classes
Step 4: use learning algorithm to derive a classifier 
based on the examples, often use decision trees for 
this purpose
Systems have been compared at the MUC 
coreference competition



MLR (Machine Learning based Resolver)

Uses C4.5 decision tree learning algorithm
Derives feature set from earlier parsing stages
Uses a data set derived automatically by its 
information extraction system
Instances are described in terms of domain-
independent linguistic features
Tested on MUC-6 coreference resolution tasks using 
Japanese business joint ventures corpus
Scored recall of 67-70% and precision of 83-88% on 
MUC-6 coreference resolution tasks

Resolve
Also uses C4.5 decision tree learning algorithm and 
derives features from earlier parsing stages
Has advantage because it uses manually annotated 
training data
Features are very domain specific
Tested on the English version of the business joint 
ventures corpus, contains 74% negative examples
Scored 80-85% recall and 87-92% precision at MUC-
6 conference
Less labor intensive than manually coded coreference
algorithms

Results/Research
Possible to make automatically trained systems that 
approach performance of manually coded systems
No need to develop specific algorithms for 
coreference resolution
Need to test different feature sets, hopefully domain-
independent features
Need to determine the effect of using domain specific 
information and test outside of the information 
extraction domain
Determine effects of errors in earlier stages

Future Directions
Information extraction is a relatively new sub field of 
natural language processing
Use statistical methods to avoid the need for large 
amounts of domain-specific training data
Develop domain-independent systems that do not 
need to be retrained for new each extraction task
Many algorithms exist, but there is little training data 
available and it is expensive to produce a new corpus 
for each task



Future Directions (cont’d)
Partial solution to making domain-independent 
systems: build systems that end user can train by 
themselves for new tasks
For this goal, need algorithms that can fully specify 
an extraction system using just answer keys
Demand by industry, military, etc. for practical 
systems increases with the amount of online text
To meet demand, must eventually make systems that 
work autonomously and can handle any domain 
without tuning


