Today's Papers

Example Selection for Bootstrapping Statistical
Parsers (2003)

Mark Steedman, Rebecca Hwa, Stephen Clark, Miles Osborne,
Anoop Sarkar, Julia Hockenmaier, Paul Ruhlen, Steven Baker,
Jeremiah Crim

Parsing with Treebank Grammars: Empirical
Bounds, Theoretical Models, and the Structure
of the Penn Treebank (2001)

Dan Klein and Christopher D. Manning

Co-training

Idea: multiple classifiers (parsers) train each other
Assumes parsers use independent models

During each co-training iteration:
Select a small cache of unlabeled sentences
Run parsers A and B on the cache
Score each parse output from each parser

Select some of A's parses to add to the training set of B,
select some of B's parses to add to the training set of A

Retrain both A and B

Corrected co-training: human checks & corrects
parser output before it is added to training set

Co-training (2)

Problem 1: How do we score output of parser?
Problem 2: How do we do sample selection?
Intuitively, we should use only accurate output
But also choose examples with high training utility

This paper: Sample selection for co-training

Opposing goals: want training samples to have both
high training utility and high accuracy

Scoring & selecting training
examples

Parse scoring
Optimal: comparison to human-labeled ground truth
Practical: likelihood of parse given model

Training example selection
. Above-n: (select high-quality samples)
. (score of teacher's parse) > n
Difference: (select high-utility samples)
. (score of teacher's parse) — (score of student's parse) > n
Intersection: (high-quality, high-utility samples)

. (score of teacher's parse in highest n percentile) and
(score of student's parse in lowest n percentile)

Experimental protocol

Two parsers
Lexicalized context free grammar parser [Collins99]
Lexicalized tree adjoining grammar parser [Sarkar02]

Seed (labelled) training data: 1,000 sentences
Unlabelled training data: ~38,000 sentences
Cache size: 500 sentences

Test data: independent, ~2,400 sentences

i Results, ideal scoring function

Relaxed (~85% accuracy) “Strict” (95% accuracy)

“~Difference method with n=10%
does best,

Difference method with | £ *
n=10% does best

1 ... but intersection with n=30%)
i may do better, given more data

Conclusron utlllty is more |mportant than accuracy

But:
Statistical significance (e.g. error bars)?
. What about other values of n?

Results, practical scoring function

| Statistically
|significant?

~20 test sentences

~1 percentage pornt galn using diff-30% or int-30%
Again, utility more important than accuracy

i Corrected co-training, ideal
scoring

.
/.-’-./'
3 Poet —t o
S wl - — ! ERd A -
i i - s ,' rd L
[2/ P 1 3 g
[i .-‘,{: r/
T !y F bl
B " { o Bad choice: requires more human & | /
N effort than supervised learning| mk [/
T I
i’
I | J
(i.e. # of sentences that must be checked by human) (i.e. # of constituents that must be corrected by human)

Intersection (n=30%) may be best choice based
on growth rate (need more data to confirm)

Scoring

i Corrected co-training, practical

(i.e. # of semenceshl;h;tﬂr;u.s; k-):clhecked by human) (i.e. # of cons’tltu;ntsthatr;wust lljeﬁ_corrected by human)
Corrected co-training still saves human effort

Again, utility is more important than accuracy
(assuming results are statistically significant)

i Conclusions

Selection methods emphasizing high training utility
do best, even at the expense of lower accuracy

Quality of scoring function important

For ideal scoring function, co-training significantly improved
parser performance (2-3 percentage points)

For practical scoring function, co-training improved
performance only marginally (< 1 percentage point)

. (so better scoring functions are needed...)

Corrected co-training with high training utility
selection further increases performance, with less
human effort than a supervised method

Future work: try other pairs (sets) of parsers

Today's Papers

Example Selection for Bootstrapping Statistical
Parsers (2003)

Mark Steedman, Rebecca Hwa, Stephen Clark, Miles Osborne,
Anoop Sarkar, Julia Hockenmaier, Paul Ruhlen, Steven Baker,
Jeremiah Crim

Parsing with Treebank Grammars: Empirical
Bounds, Theoretical Models, and the Structure
of the Penn Treebank (2001)

Dan Klein and Christopher D. Manning

Paper by Klein & Manning

Idea: build a grammar by observing the hand-
labelled parses of the Penn treebank

But: this can create huge grammars

[Charniak96] found 10,605 rules on the Penn treebank,

and less than 40% of those occurred more than once
How fast (slow) are chart parsers that use these
grammars?

Which parameters affect parsing speed and
memory use? How can we model these effects?

Parameters (1)

Tree transforms
None, NoEmpties, NoUnaries

TOP TOP TOr Top TOP
S-HLN $ s s .
NPSBI VP NP Ve v
NONE- VB -NONE- VB VB VB
el' Ateme ; . J.relm.- / i.'rlan.' Ateme I.u::m-
(a) (b) (c) (dy (e
Figure 1: Tree Transforms: (a) The raw tree, (b) No-
TRANSFORM, (c) NOEMPTIES, (d) NOUNARIES-

HiGH (e) NOUNARIESLOW

Parameters (2)

Grammar encoding
List, trie, or minimized DFA

All encodings equivalent (do not affect parser output)
P
os.

e.g., rules for noun
phrase:

(gray and white states
are accepting)

Rule ordering
Top-down or Bottom-up

Background: chart parsers (1)

C categories, S states in the grammar DFA
Chart: nodes and edges
Node: placed between each word of sentence
- (so n+1 nodes for a sentence with 77 words)
Span: range of words (e.g. [0,2] refers to The old)
. (there are O(r¥) possible spans)

\%
ART N A S NP VP
NP ->ART N
§ | old A VP >V NP |V
\% ->man
NP ->ART . N VP->V . NP N ->man | old

ART ->the

Background: chart parsers (2)

Edge: associates a category with a span (e.g. N:[1,2])
Passive edge: e.g. ART:[0,1]
Means the span belongs to the category
. There are O(Cr¥) possible passive edges (—~2% of edges)
Active edge: e.g. NP -> ART . N:[0,1]

Means that if we find some node k such that [1,k] is a noun, then [0,k] is
a noun phrase

. There are O(Sr?) possible active edges (~98% of edges)

\Y
ART N A S ->NP VP
NP ->ART N
§ | old A VP >V NP |V
\% ->man
NP ->ART . N VP->V . NP N ->man | old
ART ->the

i Background: chart parsers (3)

Saturation of a span: # of edges over that span

Traversal: combining an active edge and a passive edge to form a
new edge

e.g. (NP -> ART . N:[0,1] + Noun:[1,2]) => NP:[0,2]

of traversals bounded by O(SCr®)

Computation cost proportional to number of traversals

Memory use proportional to number of active edges [O(5r#)]

ART N A S >NP VP
NP ->ART N
[) old) VP >V NP |V
\% -> man
NP ->ART . N VP->V . NP N ->man | old
ART ->the

i Background: chart parsers (3)

Saturation of a span: # of edges over that span

Traversal: combining an active edge and a passive edge to form a
new edge

e.g. (NP -> ART . N:[0,1] + Noun:[1,2]) => NP:[0,2]

of traversals bounded by O(SCr?)

Computation cost proportional to number of traversals

Memory use proportional to number of active edges [O(57#)]

NP v

MA S NP VP
NP ->ART N
0

) old A VP >V NP |V
V ->man

NP -> ART . N VP->V. NP N ->man | old
ART ->the

i Results: parsing time

360 4 —s— List-MoTransform
exp 3.54 r 0,999

300 —o— Trie-NoTransform
exp 3,16 1 0,995
240 —o— Trie-NoEmplies

Wl WA A‘ I
[J¥S

exp 3.67 r 0,999
—— Trie-MNolnariesLow
exp 3.65r 0,999
Min-MNoTransform
exp 2.87 r 0,998
------ Min-NoUnariesLow

exp 3.32 r 1.000

120

Avg. Time (seconds)

B0

0 m " T
0 10 20 30 40 50

Sentence Length

Fit power law model (y=Ax?) to data

Some exponents > 3 (asymptotic worst case)

Execution time affected by Java garbage collection
Traversal count a better measure of execution time

i Results: traversal counts

B, Traversals

Sortancs Longth Sentoncs Length

Simpler grammars (more aggressive tree
transforms) produce faster parsers

But affect utility of parses

Fewer states (more aggressive state reduction) in
grammar encoding produce faster parsers

i Results: top-down vs. bottom-up

1.002

1.001 \\

1.000
2 0999 e A
a /.‘_I""’r"T ——Edges
E 0998
S o
® 0997
- /

0.996 '-\.f

0.995

0.994 T T T T

0 10 20 30 40 50

Sentence Length

Top-down parsing slightly more efficient

Modeling passive edge count

ptot(n) =Y ;_o(n+ 1 —i)psat;

/

Avg # of passive edges for # of possible spans of Average passive
a sentence of length n length i saturation of a span of
length i

Find empirically that psat, for />2is relatively
constant, so this sum can be approximated as (for
NoTransform and NoEmpties):

(n—l n

ptot(n) = ~="—psals + (n)psat, + (n + 1)psaty

i Modeling active edge count

Assume a random tag matches a random word with some
fixed probability p
We can characterize an active state by the number of tags ¢
and categories ¢ that must be matched

For an active state a, sigma(a)=(t,c) is its signature
Approximate active edge count by summing over

signatures:
asat(n) =3 count(c)Eacqs[P(match(a, n))

Avg # of active edges for # of active states Expected probability that a random
a span of length n having signature sigma rule of signature sigma will match
a random span of length n

count and p are parameters estimated from treebank

Modeling traversal count

Predict traversals from passive and active edge
models

Assume that a given active edge and a given
passive edge can be combined into a traversal
with the following fixed probability:

1 for lists

~3.7 for tries
Avg outgoing degree of FSA‘//%_Z for min. FSAs

of labels (categories or POS tags)

Traversal counts: observed vs.

Observed Predicted

—

0 10 20 0 40 50
Sentence Length

Sontence Length

i Conclusions

. Simple models can be built to predict parse time,
memory requirements

Ordering (top-down or bottom-up) has little effect
on performance

Choice of grammar encoding has greatest effect
on parser

. This is good, since choice of tree transform is highly
application-sensitive

