Today's Papers

- Example Selection for Bootstrapping Statistical Parsers (2003)
 - Mark Steedman, Rebecca Hwa, Stephen Clark, Miles Osborne, Anoop Sarkar, Julia Hockenmaier, Paul Ruhlen, Steven Baker, Jeremiah Crim
- Parsing with Treebank Grammars: Empirical Bounds, Theoretical Models, and the Structure of the Penn Treebank (2001)
 - Dan Klein and Christopher D. Manning

Co-training

- Idea: multiple classifiers (parsers) train each other
- Assumes parsers use independent models
- During each co-training iteration:
 - Select a small cache of unlabeled sentences
 - Run parsers A and B on the cache
 - Score each parse output from each parser
 - Select some of A's parses to add to the training set of B, select some of B's parses to add to the training set of A
 - · Retrain both A and B
- Corrected co-training: human checks & corrects parser output before it is added to training set

Co-training (2)

- Problem 1: How do we score output of parser?
- Problem 2: How do we do sample selection?
 - Intuitively, we should use only <u>accurate</u> output
 - · But also choose examples with high training utility
- This paper: Sample selection for co-training
 - Opposing goals: want training samples to have both <u>high training utility</u> and <u>high accuracy</u>

• Parse scoring

- Optimal: comparison to human-labeled ground truth
- Practical: likelihood of parse given model
- Training example selection
 - Above-n: (select high-quality samples)
 - (score of teacher's parse) > n
 - Difference: (select high-utility samples)
 - · (score of teacher's parse) (score of student's parse) \ge n
 - Intersection: (high-quality, high-utility samples)
 - (score of teacher's parse in highest n percentile) <u>and</u> (score of student's parse in lowest n percentile)

Experimental protocol

- Two parsers
 - Lexicalized context free grammar parser [Collins99]
 - Lexicalized tree adjoining grammar parser [Sarkar02]
- Seed (labelled) training data: 1,000 sentences
- Unlabelled training data: ~38,000 sentences
- Cache size: 500 sentences
- Test data: independent, ~2,400 sentences

What about other values of n?

- ~1 percentage point gain using diff-30% or int-30%
- Again, utility more important than accuracy

Intersection (n=30%) may be best choice based on growth rate (need more data to confirm)

- · Corrected co-training still saves human effort
- Again, utility is more important than accuracy (assuming results are statistically significant)

Conclusions

- Selection methods emphasizing high training utility do best, even at the expense of lower accuracy
- Quality of scoring function important
 - For ideal scoring function, co-training significantly improved parser performance (2-3 percentage points)
 - For practical scoring function, co-training improved performance only marginally (< 1 percentage point)
 - (so better scoring functions are needed...)
- Corrected co-training with high training utility selection further increases performance, with less human effort than a supervised method
- Future work: try other pairs (sets) of parsers

Today's Papers

- Example Selection for Bootstrapping Statistical Parsers (2003)
 - Mark Steedman, Rebecca Hwa, Stephen Clark, Miles Osborne, Anoop Sarkar, Julia Hockenmaier, Paul Ruhlen, Steven Baker, Jeremiah Crim
- Parsing with Treebank Grammars: Empirical Bounds, Theoretical Models, and the Structure of the Penn Treebank (2001)
 - · Dan Klein and Christopher D. Manning

Pa

Paper by Klein & Manning

- Idea: build a grammar by observing the handlabelled parses of the Penn treebank
- But: this can create huge grammars
 - [Charniak96] found 10,605 rules on the Penn treebank, and less than 40% of those occurred more than once
- How fast (slow) are chart parsers that use these grammars?
- Which parameters affect parsing speed and memory use? How can we model these effects?

Tree transforms

• None, NoEmpties, NoUnaries

TOP S-HLN	TOP S	TOP S	TOP S	TOP
NP-SBJ VP $ $ $ -NONE- VB $ $ $ $ \epsilon Atom$	$ \begin{array}{c c} & & & \\ & & & NP & VP \\ & - & NONE- & VB \\ & & - & & - \\ e & \epsilon & Atom \end{array} $	I VP VB I e Atone	Atone	VB I Atone
(a)	(b)	(c)	(d)	(e)

Figure 1: Tree Transforms: (a) The raw tree, (b) No-TRANSFORM, (c) NOEMPTIES, (d) NOUNARIES-HIGH (e) NOUNARIESLOW

Parameters (2)

- Grammar encoding
 - · List, trie, or minimized DFA
 - · All encodings equivalent (do not affect parser output)

- Rule ordering
 - Top-down or Bottom-up

Background: chart parsers (1)

- C categories, S states in the grammar DFA
- · Chart: nodes and edges
- Node: placed between each word of sentence
 - (so n+1 nodes for a sentence with n words)
- Span: range of words (e.g. [0,2] refers to The old)
 - (there are $O(n^2)$ possible spans)

Background: chart parsers (3)

- Saturation of a span: # of edges over that span
- Traversal: combining an active edge and a passive edge to form a new edge
 - . e.g. (NP -> ART . N:[0,1] + Noun:[1,2]) => NP:[0,2]
 - . # of traversals bounded by O(SCn³)
- Computation cost proportional to number of traversals
- Memory use proportional to number of active edges [O(Sn²)]

Background: chart parsers (3)

- Saturation of a span: # of edges over that span
- Traversal: combining an active edge and a passive edge to form a new edge
 - . e.g. (NP -> ART . N:[0,1] + Noun:[1,2]) => NP:[0,2]
 - . # of traversals bounded by O(SCn³)
- Computation cost proportional to number of traversals
- Memory use proportional to number of active edges [O(Sn²)]

S -> NP VP NP -> ART N VP -> V NP | V V -> man N -> man | old ART -> the

- Fit power law model (y=Ax^B) to data
- Some exponents > 3 (asymptotic worst case)
- Execution time affected by Java garbage collection
 - . Traversal count a better measure of execution time

- Simpler grammars (more aggressive tree transforms) produce faster parsers
 - But affect utility of parses
- Fewer states (more aggressive state reduction) in grammar encoding produce faster parsers

Top-down parsing slightly more efficient

Modeling passive edge count $ptot(n) = \sum_{i=0}^{n} (n+1-i)psat_i$ Avg # of passive edges for # of possible spans of length i Average passive saturation of a span of length i $Find \text{ empirically that } psat_i \text{ for } i \ge 2 \text{ is relatively constant, so this sum can be approximated as (for is the set of t$

 $ptot(n) = \frac{(n-1)n}{2}psat_2 + (n)psat_1 + (n+1)psat_0$

NoTransform and NoEmpties):

Modeling active edge count

- Assume a random tag matches a random word with some fixed probability p
- We can characterize an active state by the number of tags *t* and categories *c* that must be matched
 - For an active state a, sigma(a)=(t,c) is its signature
- Approximate active edge count by summing over signatures:

count and p are parameters estimated from treebank

- Predict traversals from passive and active edge models
- Assume that a given active edge and a given passive edge can be combined into a traversal with the following fixed probability:

Conclusions

- Simple models can be built to predict parse time, memory requirements
- Ordering (top-down or bottom-up) has little effect on performance
- Choice of grammar encoding has greatest effect
 on parser
 - This is good, since choice of tree transform is highly application-sensitive