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Co-training
• Idea: multiple classifiers (parsers) train each other
• Assumes parsers use independent models
• During each co-training iteration:

• Select a small cache of unlabeled sentences

• Run parsers A and B on the cache

• Score each parse output from each parser

• Select some of A's parses to add to the training set of B, 
select some of B's parses to add to the training set of A

• Retrain both A and B

• Corrected co-training: human checks & corrects 
parser output before it is added to training set

Co-training (2)
• Problem 1: How do we score output of parser?
• Problem 2: How do we do sample selection?

• Intuitively, we should use only accurate output
• But also choose examples with high training utility

• This paper: Sample selection for co-training
• Opposing goals: want training samples to have both 

high training utility and high accuracy

Scoring & selecting training 
examples

• Parse scoring
• Optimal: comparison to human-labeled ground truth 

• Practical: likelihood of parse given model

• Training example selection
• Above-n:  (select high-quality samples)

• (score of teacher's parse) > n

• Difference: (select high-utility samples)

• (score of teacher's parse) – (score of student's parse) > n

• Intersection: (high-quality, high-utility samples)

• (score of teacher's parse in highest n percentile) and
(score of student's parse in lowest n percentile)



Experimental protocol
• Two parsers

• Lexicalized context free grammar parser [Collins99]

• Lexicalized tree adjoining grammar parser [Sarkar02]

• Seed (labelled) training data: 1,000 sentences

• Unlabelled training data: ~38,000 sentences

• Cache size: 500 sentences

• Test data: independent, ~2,400 sentences

Results, ideal scoring function

• Conclusion: utility is more important than accuracy
• But:

• Statistical significance (e.g. error bars)? 

• What about other values of n?

Difference method with 
n=10% does best

“Relaxed” (~85% accuracy) “Strict” (~95% accuracy)

Difference method with n=10% 
does best,

... but intersection with n=30% 
may do better, given more data

Results, practical scoring function

• ~1 percentage point gain using diff-30% or int-30%
• Again, utility more important than accuracy
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Corrected co-training, ideal 
scoring 

• Intersection (n=30%) may be best choice based 
on growth rate (need more data to confirm)

(i.e. # of sentences that must be checked by human) (i.e. # of constituents that must be corrected by human)

Bad choice: requires more human 
effort than supervised learning



Corrected co-training, practical 
scoring

• Corrected co-training still saves human effort
• Again, utility is more important than accuracy 

(assuming results are statistically significant)

(i.e. # of sentences that must be checked by human) (i.e. # of constituents that must be corrected by human)

Conclusions
• Selection methods emphasizing high training utility

do best, even at the expense of lower accuracy
• Quality of scoring function important

• For ideal scoring function, co-training significantly improved 
parser performance (2-3 percentage points)

• For practical scoring function, co-training improved 
performance only marginally (< 1 percentage point)

• (so better scoring functions are needed...)

• Corrected co-training with high training utility 
selection further increases performance, with less 
human effort than a supervised method

• Future work: try other pairs (sets) of parsers
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Paper by Klein & Manning
• Idea: build a grammar by observing the hand-

labelled parses of the Penn treebank 
• But: this can create huge grammars 

• [Charniak96] found 10,605 rules on the Penn treebank, 
and less than 40% of those occurred more than once

• How fast (slow) are chart parsers that use these 
grammars?

• Which parameters affect parsing speed and 
memory use? How can we model these effects?



Parameters (1)
• Tree transforms

• None, NoEmpties, NoUnaries

Parameters (2)
• Grammar encoding

• List, trie, or minimized DFA

• All encodings equivalent (do not affect parser output)

• Rule ordering
• Top-down or Bottom-up

e.g., rules for noun 
phrase:

(gray and white states 
are accepting)

Background: chart parsers (1)
• C categories, S states in the grammar DFA
• Chart: nodes and edges
• Node: placed between each word of sentence 

• (so n+1 nodes for a sentence with n words)
• Span: range of words (e.g. [0,2] refers to The old)

• (there are O(n2) possible spans)

0 321
The old man

S -> NP  VP
NP -> ART  N
VP -> V  NP  |  V
V -> man
N -> man   |   old
ART -> the

ART N N

V

NP -> ART . N VP-> V . NP

Background: chart parsers (2)
• Edge: associates a category with a span (e.g. N:[1,2])

• Passive edge: e.g. ART:[0,1]

• Means the span belongs to the category

• There are O(Cn2) possible passive edges  (~2% of edges)

• Active edge: e.g. NP -> ART . N:[0,1]

• Means that if we find some node k such that [1,k] is a noun, then [0,k] is 
a noun phrase

• There are O(Sn2) possible active edges (~98% of edges)
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Background: chart parsers (3)
• Saturation of a span: # of edges over that span

• Traversal: combining an active edge and a passive edge to form a
new edge

• e.g. (NP -> ART . N:[0,1] + Noun:[1,2]) => NP:[0,2]

• # of traversals bounded by O(SCn3)

• Computation cost proportional to number of traversals

• Memory use proportional to number of active edges [O(Sn2)]
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Results: parsing time

• Fit power law model (y=AxB) to data
• Some exponents > 3 (asymptotic worst case)
• Execution time affected by Java garbage collection

• Traversal count a better measure of execution time

Results: traversal counts

• Simpler grammars (more aggressive tree 
transforms) produce faster parsers

• But affect utility of parses

• Fewer states (more aggressive state reduction) in 
grammar encoding produce faster parsers



Results: top-down vs. bottom-up

• Top-down parsing slightly more efficient 

Modeling passive edge count

• Find empirically that psati for i>2 is relatively 
constant, so this sum can be approximated as (for 
NoTransform and NoEmpties):

Avg # of passive edges for 
a sentence of length n

# of possible spans of 
length i

Average passive 
saturation of a span of 

length i

Modeling active edge count
• Assume a random tag matches a random word with some 

fixed probability p
• We can characterize an active state by the number of tags t

and categories c that must be matched 
• For an active state a, sigma(a)=(t,c) is its signature

• Approximate active edge count by summing over 
signatures:

Avg # of active edges for 
a span of length n

# of active states 
having signature sigma

Expected probability that a random 
rule of signature sigma will match 

a random span of length n

• count and p are parameters estimated from treebank

Modeling traversal count
• Predict traversals from passive and active edge 

models
• Assume that a given active edge and a given 

passive edge can be combined into a traversal 
with the following fixed probability:

1 for lists
~3.7 for tries
~4.2 for min. FSAsAvg outgoing degree of FSA

# of labels (categories or POS tags)
73



Traversal counts: observed vs. 
modeled

Observed Predicted

Conclusions
• Simple models can be built to predict parse time, 

memory requirements
• Ordering (top-down or bottom-up) has little effect 

on performance
• Choice of grammar encoding has greatest effect 

on parser
• This is good, since choice of tree transform is highly 

application-sensitive


