
Comparing a Linguistic and a 
Stochastic Tagger

Christer Samuelsson
Atro Voutilainen

Comparing a Linguistic and a 
Stochastic Tagger

Compares HMM to EngCG-2
HMM is statistical, EngCG is based on hand-coded linguistic 
rules

An attempt to allay fears of bias in previous EngCG results
Original EngCG reported 99.7% correct analysis (with some 
small ambiguity remaining)
The validity of these results was questioned

Skeptics say:
Even human linguists can only agree 97% of the time – how 
can a machine get 99% accuracy?
Test corpus may be biased towards high performance for EngCG
EngCG tag set may be very basic, making POS tagging easy
Low error rate may be due to high remaining ambiguity

Background:
How Does EngCG Work?

Sequentially applied modules
Morphological Analyser

Assigns all possible POS tags to words, e.g.

Heuristics determine possible POS tags of unseen words
Disambiguator

Remove illegitimate analyses. Can leave ambiguity!
Optionally, application-specific heuristics / statistical 
disambiguators for still ambiguous words

"free" A ABS
"free" <SVO> V SUBJUNCTIVE VFIN
"free" <SVO> V IMP VFIN
"free" <SVO> V INF
"free" <SVO> V PRES -SG3 VFIN

"<free>"

Background:
How Does EngCG Work?

The Disambiguator
Multiple passes (5 subgrammars)

Starts with very reliable rules, e.g.

Proceeds to rough heuristics; error rates 
increase to 10% - 30% in final two 
subgrammars

REMOVE (V)
(-1C DET) ; 

99.5596.54445

% Correct Remain% Extra Senses Removed# RulesSubgramar

99.7195.74714

99.8594.423743

99.8692.871582

99.8891.7029671



Issue One: Maximum Accuracy
Samuelsson and Voutilainen believe inter-linguist 
agreement can approach 100%
In creating benchmark corpus, agreement between two 
experts was measured at 99.3% before corrections

After correction of simple errors, agreement 
reached 99.96%

Two special approaches in their case
EngCG tag set avoids semantically-motivated 
tags
Linguists have “Grammarian’s Manual” of most 
common ambiguous cases and their correct 
resolution

Using statistical tests, can determine that there is a 95% 
chance that human evaluators agree more than 99.2% 
of the time on average (in these conditions)

Issue Two: Bias in Corpora
Because the paper’s focus is on unbiased 
comparison, the methods used to create 
corpora are especially important
Two corpora were used:

Training corpus: 357,000-word sample from 
Brown corpus

Used to train HMM
Test corpus:

55,000-word sample of journalistic, scientific, 
and manual texts

No subject overlap with training corpus
Helps EngCG?

The Training Corpus
Training corpus annotated with EngCG tags

First pass was original EngCG algorithm
Ambiguities resolved by expert
Used in testing EngCG-2; continually improved as 
new rules were tested and deployed

Does this lead to a bias favoring EngCG?

The Training Corpus
Training corpus annotated with EngCG tags

First pass was original EngCG algorithm
Ambiguities resolved by expert
Used in testing EngCG-2; continually improved as 
new rules were tested and deployed

Does this lead to a bias favoring EngCG?
If tagged by EngCG, sets an upper bound on how 
well HMM can perform

Imagine if EngCG were only 50% accurate – HMM could 
never do better than 50%

However, a standard practice in NLP
Given many iterations of testing and correction, most 
incorrect classifications were most likely weeded out



The Test Corpus
First analyzed using only morphological 
analyzer
Independently disambiguated by two 
linguists

Agreement reached 99.96%
After correcting for clerical errors, only 
disagreement was on 21 words (out of 55,000) 
genuinely ambiguous at the meaning level

Final “consensus corpus” made from one of 
two disambiguated versions

Issue Three: Simple Tagset
Idea is that EngCG performs so well only because the 
tagset it uses is so simple as to make annotating 
copora trivial
While one can’t compare tagsets directly, their 
relative “difficulty” can be compared by training the 
same algorithm with two different tagsets and 
comparing error rates

In this case, the HMM model’s performance with the 
EngCG tagset was compared to its performance with 
more common tagsets, and was found to be similar

Issue Four:
Ambiguity / Accuracy Tradeoff

Could be that EngCG performs so well only because of 
ambiguity that remains in POS assignments

Can’t be disproven without forcing EngCG to fully 
disambiguate

Rather than removing ambiguity from EngCG, authors 
decided to allow it in HMM

When annotating with HMM, allow tags with probabilities 
over a certain threshold to be assigned to the word in 
addition to the most probable tag
By varying threshold, vary allowable ambiguity

So, can set HMM ambiguity equivalent to EngCG ambiguity
Issues?

HMM was not designed to work this way
May not take advantage of allowed ambiguity as much as 
EngCG

Experiment
First, test HMM on Brown corpus at various training 
set sizes

Hold back 35,000 words from training corpus
Train HMM on successively larger chunks of 
remaining words, evaluating on held back subset

Main experiment
HMM:

Train HMM on full 357,000 words
Test on 55,000 word test corpus at varying levels of 
allowable ambiguity

EngCG:
Run on entire training corpus at varying levels of 
ambiguity (number of subgrammars used)

Compare HMM and EngCG at same ambiguity levels



Results: HMM Testing
Learning curve of HMM with 
respect to training set size

Paper states “has leveled off 
at 322,000 words, indicating 
that little is to be gained from 
further training”

Has it?
Remember Scaling to Very 
Very Large Corpora for 
Natural Language 
Disambiguation

Results: Algorithm Comparison
EngCG dominates at 
comparable ambiguity levels

EngCG’s error rate ranges 
from 8.6 to 28 times smaller 
than HMM’s

However, HMM’s performance 
also 1% lower than when 
training / testing on subset of 
Brown corpus

Indicates that training 
HMM on a larger corpus 
– and/or one that 
included documents 
similar to the benchmark 
corpus - could improve 
performance

Discussion
Caveats of EngCG

Vastly more work to create
However, (Chanod and Tapanainen 1995) suggest that, given a limited 
amount of time to create both an HMM and a constraint-based system, 
the constraint-based system still outperforms the HMM

Does not disambiguate fully, and therefore unsuitable for some tasks
Could be corrected for by using statistical tagger on remaining 
ambiguities

Was the analysis valid?
Even if the methods weren’t perfect, was the case that EngCG
outperforms HMMs convincingly made?

Discussion
Why does EngCG perform so well?

Simple answer:
If you really care enough to implement 3,600 constraint 
rules, you get your money’s worth

Slightly longer answer:
Errors in HMMs are tough to fix

Tuning parameters has an unpredictable effect on 
performance

Markov assumption limits HMM’s performance
E.g., “Two of the fastest fish”:
Fish could be a singular or plural noun – no way to know 
with bigram, trigram, or even quadrigram methods
Also treating words as ambiguity classes

Errors in rule-based methods, however, are always 
fixable: just add another rule


