Cost-Effective Recovery of an Endangered Species: The Red-Cockaded Woodpecker

Jon M. Conrad and Ryan M. Finseth
Department of Applied Economics and Management
Cornell University

February 10, 2011

The Red-Cockaded Woodpecker

Fig (a). Adult female RCW outside nesting cavity

- Listed as an endangered species in 1970.
- A 'keystone species' primary excavator of cavities used by at least 27 other species
- We base our analysis on population in Palmetto Peartree Preserve

The Red-Cockaded Woodpecker

- Cooperative breeders
 - Live in breeding groups consisting of a breeding pair and up to 4 adult helpers
 - Each member occupies its own cavity
- Territorial
 - Breeding groups occupy territories (100-500 acres)
 consisting of nesting (cavities) and foraging habitat
- Population Dynamics
 - New territory creation is rare
 - Environmental carrying capacity limited to the number of suitable cavity clusters

RCW Management

- Majority of current RCW populations are managed
- Artificial Cavity Construction
 - Replace cavities in existing territories
 - Create territories in previously unoccupied habitat
- Translocation
 - Male and Female from donor population relocated to unoccupied territory

The Red-Cockaded Woodpecker

Fig (b). Cavity tree mortality (insert) artificial RCW cavity

Fig (c). Suitable RCW habitat

RCW Recovery Model

- The population in t+1 is a realization of the stochastic map $N_{t+1} = F(N_t, K_t, S_t; \varepsilon_{t+1})$.
- The carrying capacity in t+1 is a deterministic map $K_{t+1} = Min [G(K_t, S_t), K_{MAX}]$.
- $X_{i,t} \in \{0,1,2,...,X_{i,MAX}\}$ denotes the discrete choice set for the i^{th} recovery action in period t.
- We attempt to solve for the sequence of recovery actions that reaches a specified population target at a minimum cost.
 - deterministic and stochastic instances

RCW Problem Specification

Minimize
$$C = \sum_{t=0}^{t=T-1} \rho^t \left(c_1 X_{1,t} + c_2 X_{2,t} \right) + \rho^T \psi \left(N_T^* - N_T \right)$$
Subject to $N_{t+1} = \epsilon_{t+1} \left\{ s X_{1,t} + \left(1 + r - \frac{r N_t}{K_t} \right) N_t \right\}$
 $K_{t+1} = \min \left[\left\{ (1-a) K_t + X_{2,t} \right\}, K_{MAX} \right]$
 $X_{1,t} \in \left\{ 0,1,2,..., X_{1,MAX} \right\}$
 $X_{2,t} \in \left\{ 0,1,2,..., X_{2,MAX} \right\}$
 $\psi(N_T^* - N_T) = \$Q(N_T^* - N_T) \text{ if } N_T^* \ge N_T$
 $\psi(N_T^* - N_T) = \$R(N_T^* - N_T) \text{ if } N_T^* \le N_T$
 $K_t \ge N_t$
 $K_0 > 0, N_0 \ge 0, given.$

Penalty Function

Parameter Description and Estimates

Parameter	Description	Value
r	intrinsic growth rate	0.13
\boldsymbol{S}	translocation success rate	0.25
а	rate of decrease in carrying capacity due to cavity tree mortality, hardcover encroachment, kleptoparasitism, etc.	0.1
K_{MAX}	upper bound on carrying capacity	50
$X_{I,MAX}$	upper bound on the number of breeding pairs to be translocated per time period	6
$X_{2,MAX}$	upper bound on the number of recruitment clusters to be constructed per time period	10
N_0	number of breeding pairs at time $t = 0$	20
K_0	number of managed cavity clusters at time $t = 0$	30

Parameter Description and Estimates

Parameter	Description	Value
<i>C</i> 1	cost of translocating one breeding pair	\$3,000
<i>C</i> 2	cost of constructing one recruitment cluster (four artificial cavities)	\$800
$\mathbf{\epsilon}_{t+1}$	random variable	$Pr(\epsilon = 0.75) = 0.25$
		$Pr(\epsilon = 1.00) = 0.50$
		$Pr(\varepsilon = 1.25) = 0.25$
R	'Bonus' per breeding pair exceeding N_T *	\$5,000
Q	'Penalty' per breeding pair less than N_T *	\$40,000
δ	discount rate	0.05
ho	$1/(1+\delta)$	0.952
T	time horizon	10

Optimization

- Dynamic Programming used to solve deterministic and stochastic models
- round() used to determine state transitions in deterministic model
- Bilinear interpolation used to determine state transitions in stochastic model

Total Discounted Management Cost

Optimal Management Actions $(N_T^* = 42)$

	$\delta = 0$		$\delta = 0.05$		
t	X1(t)	X2(t)	X1(t)	<i>X2(t)</i>	
0	3	8	0	7	
1	6	10	2	10	
2	1	10	1	10	
3	0	7	0	6	
4	0	5	0	6	
5	0	5	0	6	
6	1	5	0	2	
7	1	5	5	8	
8	1	4	5	4	
9	6	0	6	0	
10	0	0	0	0	

Optimal $X_1 (N_T^* = 42)$

Optimal $X_2 (N_T^* = 42)$

Frequency of Discounted Management Cost $(N_T^* = 42)$

Conclusions

- We present an application of our general model for cost-effective recovery of an endangered or threatened species.
- Customized stochastic dynamic programming algorithm used to find optimal, adaptive management plan.
- Future work should incorporate spatial characteristics of the landscape and population.

Acknowledgements

The authors gratefully acknowledge the support of the National Science Foundation, award number 0832782.