Introduction to Conservation Planning

CS 6702: Topics in Computational Sustainability

February 10, 2011

What is conservation planning?

- Conservation planning seeks to intervene in ecosystems to support the recovery of species populations.
- Several interventions are available to conservationists and policy-makers.
 - Buying land to maintain as reserves.
 - Transplanting species populations.
 - Installing artificial accommodations for species.
 - Regulating human activity that negatively impacts species.

Why conserve species?

- Species provide services to humans.
- Support scientific discoveries beneficial to humans.
- Some species are keystones in the ecosystem.
- Species have economic value.
 - Research by economists seeks to quantify this value.

The Endangered Species Problem

- International Union for the Conservation of Nature estimates 40% of organisms are endangered (2006).
 - Habitat loss, disease, overexploitation, climate change.
- The number of endangered species is rising rapidly.

Figure 4.2 Threatened and Endangered U.S. Plant and Animal Species, 1980-1998

Source: U.S. Department of the Interior, Fish and Wildlife Service, Endangered Species Bulletin (DOI, FWS, Washington, DC, bimonthly) and Internet accessible "Box Score" from the Threatened and Endangered Species
System (TESS).

Note: Data are year-endicumulative totals. There are 1,821 total U.S. listings. A listing is an Eioria T in the status column of 50 CFR 17.11 or 17.12 (The Lists of Endangered and Threatened Wildlife and Plants).

Tackling the Problem

- In 2007, the United States federal and state governments spent over \$1.6 billion on habitat and species conservation.
- Organizations like The Conservation Fund spend millions annually on conservation efforts.
- Computational Sustainability can guide policy-makers by finding optimal intervention strategies under limited budgets.

Example Species: The Red-Cockaded Woodpecker (RCW)

- Originally distributed throughout the southeast United States, population has severely declined.
- Classified by federal government as an endangered species.
- Population estimates (1999)
 - Circa 30 isolated populations
 - Circa 11,000 individuals total.
- The RCW is a keystone species.
- The Conservation Fund seeks to increase the population that exists in the P3 Reserve on the coast of North Carolina.

Conservation Planning: The Red-Cockaded Woodpecker

- Collaborative project to develop optimal conservation strategies for Red-Cockaded Woodpecker (RCW)
 - Institute for Computational Sustainability (Cornell and OSU):

Daniel Sheldon, Bistra Dilkina, Adam Elmachtoub, Ryan Finseth, Kiyan Ahmadizadeh, Ashish Sabharwal, Jon Conrad, Carla P. Gomes, David Shmoys

The Conservation Fund:
 Will Allen, Ole Amundsen, Buck Vaughan

RCW: Conservation Planning

- Cooperative breeders: live in small family groups in well-defined territories centered around cluster of cavity trees
- Cavities!
 - One for each family group.
 - Live, old-growth pine (80+ years old)
 - 2-10 years to excavate
 - Extensively reused
- → Habitat requirements in conflict with modern land-use
- Management tools
 - Translocation
 - Buy land for conservation + install artificial cavities
- http://bna.birds.cornell.edu/bna

Population Models (Overview)

- A model of RCW population growth and dispersion is needed to optimize intervention strategies.
 - Agent-Based: Models RCW reproduction, movement, etc.
 on an individual level.
 - Metapopulation: Models RCW occupation of territories in a network stochastically.
 - Logistic: Mathematically models RCW population growth.

Problem Setup (Talk 1): Cost Effective Recovery using a Logistic Model

How can we achieve a specified population target at the end of a finite time horizon at a minimum cost?

Problem Setup (Talk 2): Site Selection using a Metapopulation Model

Given limited budget, what parcels should I conserve to maximize the expected number of occupied territories in 50 years?

Future Work: Agent-based Models

- An agent-based model exists to predict RCW growth and dispersion in a region.
 - Create our own implementation.
 - Incorporate management actions into model.
 - Use agent-based model to support optimization.
 - More general agent-based model for bird conservation?
 - Embedded model?