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Diffusion in Networks: Cascades 

  Our diffusion model:  cascades 
  A network: G=(V,E) 
  Initial set of active nodes S ⊆ V 
  Diffusion process as local stochastic activation rules of 

spread from active nodes to their neighbors  
  Independent cascade: probability of spread across each 

edge: pvw ∀ (v,w)∈ E  (independent of cascade history) 
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Influencing Cascades 
  Assume cascades can only spread to nodes acquired 

by some action.  
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Maximizing Node Activity in Cascades 

  A set of actions A = {a1..aL},  a ⊆ A 
  ai : cost c(ai ), buys nodes Vi ⊆ V.  Total budget B.    
  Time horizon H (discrete). 

  Typically many years. 
              : random variable indicating whether node v 

becomes activated in cascade under action set a 
at time t 
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Influencing Cascades: Motivating Examples 

  Human Networks:  Technology adoption among friends/
peers.   

  Social Networks: 
  Spread of rumor/news/articles on Facebook, Twitter, or 

among blogs/websites.   
Targeted-actions (e.g. marketing campaigns) can be 

chosen to optimize the spread of these phenomena.   
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Influencing Cascades: Motivating Examples 

  Epidemiology:  Spread of disease is a 
cascade.   
  In human networks, or between networks of 

households, schools, major cities, etc.  
  In agriculture settings.   

  Contamination:  The spread of toxins / 
pollutants within water networks.   

Mitigation strategies can be chosen to 
minimize the spread of such phenomena.   
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Our Application: Species Conservation 

  Intuition:  Buy land as future 
species habitat.   

  Nodes:  Land patches 
suitable as habitat (if 
conserved). 

  Actions:  Purchasing a real-
estate parcel (containing a 
set of land patches).    
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Our Application: Species Conservation 

  Given existing populations in some patches, a limited 
budget, and cascade model of species dispersion:  
  Which real-estate parcels should be purchased as 

conservation reserves to maximize the expected number 
of populated patches at the time horizon? 

  Target species: the Red-Cockaded Woodpecker 
  Federally listed rare and endangered species 

[USA Fish and Wildlife Service, 2003]. 
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RCW Cascade Model 

  Recall spread probabilities:  pvw ∀ (v,w)∈ E 
  Spread probability between pairs of land patches: 

  Distance. 
  Suitability score. 

  Land patches remain active between time-steps 
based on a survival probability.   

  Cascade model based on meta-population model 
[Walters et al., 2002] 
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Past Work 

  [Kempe et al., 2003] – Initiating cascades. 
  Limited to choosing start nodes for cascade. 
  Problem is sub-modular (greedy methods apply).  
  Sub-modularity does not hold in more general settings.    

  [Sheldon et al., 2010] – Single-stage node acquisition 
for cascades.    
  Unrealistic in many planning situations. 

  Large planning horizons => multiple rounds of 
purchases.    
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Talk Goals 

  Study and compare three problem variants 
  (A) Single-stage up-front budget.   
  (B) Single-stage split budget. 
  (C) Two-stage split budget.   

  Explore the computational difficulty of this problem.   

  Explore the tradeoffs in solution quality (expected number 
of active nodes) obtained from these three models.   
  Informs planners and planning policy makers.     
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Single-stage Decision Making 

  Commit to all purchase decisions at t=0. 
  Decisions not informed by cascade progress (closed loop).   

  (A) Single-stage Up-front Budget: 
  Commit to purchases at t=0. 
  Make purchases at t=0.   
  Already computationally difficult.   
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RCW Single-Stage Decision Making 
1.  Initial conditions.  

Legend: 
 : active land patch 
 : purchased parcel 
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RCW Single-Stage Decision Making 
2.  Purchases made at t=0.  

Legend: 
 : active land patch 
 : purchased parcel 



Legend: 
 : active land patch 
 : purchased parcel 
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RCW Single-Stage Decision Making 
2.  Cascade spreads through purchased  
patches (t=20).  
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Single-stage Decision Making 

  (B) Single-stage Split Budget: 
  Purchases in two time-steps with budget split.   
  Commit to purchase decisions in first time-step 

  No adjustment for observations on cascade progression. 



CP2010 Ahmadizadeh, Dilkina, Gomes, Sabharwal 17 

RCW Single-Stage Decision Making 
1.  Initial conditions.  

Legend: 
 : active land patch 
 : purchased parcel 
 : committed decisions 
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RCW Single-Stage Decision Making 
2.  Commit to purchases at t=0.  

Legend: 
 : active land patch 
 : purchased parcel 
 : committed decisions 
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RCW Single-Stage Decision Making 
3.  Cascade spreads through purchased 
 patches (t=10).  

Legend: 
 : active land patch 
 : purchased parcel 
 : committed decisions 
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RCW Single-Stage Decision Making 
4.  Purchase parcels committed to (t=10).  

Legend: 
 : active land patch 
 : purchased parcel 
 : committed decisions 
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RCW Single-Stage Decision Making 
5.  Cascade spreads through  

purchased patches (t=20).  

Legend: 
 : active land patch 
 : purchased parcel 
 : committed decisions 
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Split-Budget in Applications 

  Why not adjust based on observations? 
  Call for proposals, grants, government funding, etc. often 

require strict, projected budgets.   
  Requires making purchase decisions in a single-stage 

at t=0. 
  Little variation in stochastic behavior of cascade.  

  First step toward true two-stage model.   
  Significantly more difficult than single-stage upfront 

budget.    
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Two-stage Decision Making 

  Purchase decisions are made in two time-steps (stages).   
  (C) Second stage decisions can be informed by the outcome of the 

first stage (open loop).  

  Complete solution specifies 
  first-stage decisions 
  second-stage decisions for every possible scenario from 

the first stage 
=>  a “policy tree” 

  Goal:  Compute first-stage decisions that maximize 
expected outcome of second-stage.  
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RCW Two-Stage Decision Making 
1.  Initial conditions.  

Legend: 
 : active land patch 
 : purchased parcel 
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RCW Two-Stage Decision Making 
2.  Make purchases at t=0.  

Legend: 
 : active land patch 
 : purchased parcel 



CP2010 Ahmadizadeh, Dilkina, Gomes, Sabharwal 26 

RCW Two-Stage Decision Making 
3.  Cascade spreads through purchased 

patches (t=10).  

Legend: 
 : active land patch 
 : purchased parcel 
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RCW Two-Stage Decision Making 
4.  Additional purchases made (t=10).  

Legend: 
 : active land patch 
 : purchased parcel 



CP2010 Ahmadizadeh, Dilkina, Gomes, Sabharwal 28 

RCW Two-Stage Decision Making 
5.  Cascade spreads through  

purchased patches (t=20).  

Legend: 
 : active land patch 
 : purchased parcel 
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Search Space Complexity 

  Complexity of stochastic optimization illustrated by 
scenario tree.  
  Goal:  Choose the actions that maximize the 

expected outcome of stochastic behavior.   
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Search Space (Single-stage) 

  Single-stage problems: scenario tree with fan-out linear in scenario 
space.   

first-stage actions 

stochastic realizations 

max 

avg 
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Search Space (Two-stage) 
Two-stage problem: scenario tree with quadratic fan-out in scenario space.   
Largely intractable.     

first-stage actions 

first-stage stochastic  
realizations 

second-stage actions 

second-stage stochastic  
realizations 

max 

avg 

max 

avg 



Solution Methods 

CP2010 Ahmadizadeh, Dilkina, Gomes, 
Sabharwal 

32 



CP2010 Ahmadizadeh, Dilkina, Gomes, Sabharwal 33 

Stochastic MIP Formulation 

  Maximizes expected active land patches at time horizon.   
  Applies to single-stage problems (A) upfront budget and (B) split 

budget 
  Deterministic analogue (finite scenario set) => building block for 

solution procedures. 
  scenario : cascade realization  
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Sample Average Approximation 
•  Stochastic optimization by solving series of deterministic 
analogues [Shapiro, 2003]  
•  Sample a set of N scenarios.   
•  Optimal solution for one sampled set over-fits to that set.   
•  Larger N increases MIP complexity (max 20 scenarios tractable 
for RCW).   

scenario space 
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Sample Average Approximation (Single-stage) 

  Sample a finite set of N cascade scenarios.   

sample 
(N scenarios) 
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Sample Average Approximation (Single-stage) 

  Maximize the empirical average over this set.   

optimize over 
sample set (MIP) 

sample 
(N scenarios) 
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Sample Average Approximation (Single-stage) 

  Evaluate obtained solution s on small set of independent scenarios. 

s1, o1 evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 
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Sample Average Approximation (Single-stage) 

  Repeat process M times to obtain M candidate solutions.   

s1, o1 evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 

s2, o2 evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 

sM, oM evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 

…
 

…
 

…
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Sample Average Approximation (Single-stage) 

  Take candidate solution s* with best evaluation as solution obtained by 
process.   

evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 

s2, o2 evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 

sM, oM evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 

…
 

…
 

…
 

s1, o1 

s* (solution with best evaluation) 
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Sample Average Approximation (Single-stage) 

  Evaluate s* on large, independent test set of scenarios (final solution 
quality).   

test 

How good is s* 
compared to the 
optimal solution? 

evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 

s2, o2 evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 

sM, oM evaluate optimize over 
sample set (MIP) 

sample 
(N scenarios) 

…
 

…
 

…
 

s1, o1 

s* (solution with best evaluation) 

o* (solution quality of s*) 
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Stochastic optimality guarantees 

  Expected utility of s* gives a lower bound on true optimum 
=> o* gives a stochastic lower bound on true optimum   

  E[o] gives an upper bound on the true optimum. 
=> Sampled average of o gives stochastic upper bound   

  Convergence of bounds guaranteed for increasing sample size 
N.   

number of samples (N) 

ob
je

ct
iv

e mean MIP obj 

s* quality 
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Two-stage Re-planning with SAA 

  Purchase decisions made in time-steps 0 and T1 over 
horizon H. Budgets b1 and b2.  

  Re-planning approximates solution to (C) Two-Stage Split 
Budget 
  Computes set of first-stage decisions.   
  Nested SAA procedure used to evaluate candidate first-stage 

decisions.   



CP2010 Ahmadizadeh, Dilkina, Gomes, Sabharwal 43 

Two-Stage Re-planning 

  Obtain M candidate first-stage decisions using SAA for (B) Single-stage 
split budget 

re-planning test 

re-planning 
evaluate 

optimize over 
sample set (MIP) 

sample 
(N scenarios) 

s2 re-planning 
evaluate 

optimize over 
sample set (MIP) 

sample 
(N scenarios) 

sM re-planning 
evaluate 

optimize over 
sample set (MIP) 

sample 
(N scenarios) 

…
 

…
 

…
 

s1 

s* (solution with best evaluation) 

o* (solution quality of s*) 



CP2010 Ahmadizadeh, Dilkina, Gomes, Sabharwal 44 

SAA Re-planning Evaluation 

  Generate F prefix scenarios, realizing first stage under s 

generate 
prefix 

scenarios 

s (first-stage decisions) 
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SAA Re-planning Evaluation 

  For each prefix scenario: SAA single-stage upfront budget for years  
T1 …. H.   
  Occupied patches at end of prefix scenario are initial 
  First-stage purchases available for free 

SAA (A) 
T1…H 

SAA (A) 
T1…H 

SAA (A) 
T1…H 

… 

s (first-stage decisions) 

generate 
prefix 

scenarios 
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SAA Re-planning Evaluation 

  Evaluation performance of s:  average second-stage performance (qi) 

SAA (A) 
T1…H 

SAA (A) 
T1…H 

SAA (A) 
T1…H 

… 

s (first-stage decisions) 

q1 q2 qF 

average 

generate 
prefix 

scenarios 
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Experimental Background 

  Red-cockaded Woodpecker (RCW) Conservation in North Carolina. 
  Listed by U.S.A government as rare and endangered [USA Fish and Wildlife 

Service, 2003]. 

  The Conservation Fund: conserve RCW on North Carolina coast. 
  Nodes = land patches large enough to be RCW habitat (411 patches).  
  20 initial territories 
  H=20 time horizon.  
  Actions = parcels of land for purchase that contain potential territories 

(146 parcels). 
  N = 10 (finite sample set size for forming 

MIPs) 
  CPLEX used for MIP solving.  
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RCW Problem Generator 

  Instances generated from base map by random 
perturbation.   
  Perturbs territory suitability scores around base values.   
  Randomly choose initial territories in high suitability parcels. 
  Assign parcel costs with inverse correlation to parcel suitability.  

  Used to generate large set of maps which we use to study 
runtime distributions. 

  Generator available online (C++ Implementation). 
www.cs.cornell.edu/~kiyan/rcw/generator.htm 



Runtime Distributions 
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(A) Single-stage upfront budget (B) Single-stage split budget 

1.  Easy-hard-easy pattern 
2.  Increasing difficulty with survival probability 
3.  Split budget 10x harder than upfront budget 



Single Instance Difficulty: Power-Law Decay 
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Data: 100,000 MIPs formed from 10 random scenarios on map-30714. 

“survivor function”: 
Fraction of instances 
unsolved in time t 



Single-stage: upfront vs. split budget 
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1.  Close bounds indicate solution close to optimal. 
2.  Upfront variant obtains higher quality solutions than split. 

Upfront (A) and Split (B) UB 

Upfront (A) LB (best solution) 

Split (B) LB (best solution) 



Boosting Solution Quality with Re-planning 
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1.  Re-planning with observations provides 
significant improvements over committing to all 
decisions upfront.   

2.  Re-planning can outperform single-stage upfront 
budget. 



The Balance in Re-planning 

  Re-planning sensitive to balance in budget split: 
  Benefits with 30-70% split budget with T1=5 
  Does worse with, e.g., 50-50% split with T1=10, and many 

other combinations 
  Spending too much upfront limits actions available to re-

plan in second stage.  
  Spending too little upfront leaves little variation re-planning 

can take advantage of.  
  Re-planning outperforms either two problem methods 

under the correct planning conditions.   
  Decision on budget split could be encoded in 

optimization problem (future work).   
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Summary and Conclusions 

  Presented cascade model for stochastic diffusion in 
many interesting networks (conservation, epidemiology, 
social networks).   

  Extended SAA sampling methodology for stochastic 
optimization to a multistage setting for cascades.   

  Significant complexity and variation when solving 
deterministic analogues of stochastic problems.   
  Easy-hard-easy patterns, power-law decay 

  When decisions are made in multiple stages, re-
planning based on stochastic outcomes can have 
significant benefit (when budget split is carefully chosen).   


