

Infrastructure Systems

- Distributed
- Complex
- Highly Interdependent
- Constantly Changing
- Vital
- At risk:
 - Dilapidation
 - Forces of Nature
 - Supply/Demand
 - Malevolent Threats

Computational needs

- Population growth model
- Efficient use of resources
- Risk analysis
- Infrastructure modeling
- Analytical studies
- Real-time analysis
- Sensor Placement
- The applications are endless. . .

Accurate models are vital for:

- Economic development
- Energy sustainability
- Cost planning
- Ecology
- Environment
- Quality of life
- Many others. . .

Water Systems

- Are a unique challenge:
 - Availability needs to be high
 - Often built on much older sub-systems
 - Demand is increasing dramatically
 - Population Growth
 - Energy need
 - Resources may be limited
 - Need to be monitored for quality and safety
 - Huge number of possible contaniments/problems in the system

System Problems:

- Chemical Contaminants
- Biological Contaminants
- Physical Damage
- Source interruption
- Unauthorized use

Sensors

- Often "secondary" Ph, Chlorine, Alkalinity, volume, etc.
- More advanced (and expensive) sensors may not be feasible, cost prohibitive, etc

When is an "event" really an "event"?

When is an "event" really an "event"?

Removes "noise" of day-to-day operations

Sensor Placement

- Huge systems, limited resources
- Many potential points of failure

Sensor Placement (cont.)

- Need best coverage for lowest cost
- Parameters change drastically from system to system
- Changes in one system can affect others

Some solutions

- Contamination warning systems (CWS)
 - EPA:
 - Classification and Analysis of Networked sensor ARraYs for Event Detection Systems (CANARY-EDS)
 - Water Security Initiative (WSI)
 - Vulnerability Self Assessment Tool (VSAT)
 - Water Health and Economic Analysis Tool (WHEAT)
- Sensor Placement
 - Sensor Placement Optimization Tool (SPOT)

CANARY

- Contamination warning system
- Originally designed to test algorithm feasibility on historical data (offline mode)
- Expanded to include an on-line mode to monitor real-time data provided by SCADA systems
- Analyzes one step of data at a time, compares actual to predicted based on the previous information

Canary (cont.)

passing protocol using EDDIES or a similar system.

Canary (cont.)

Canary (cont.)

Data is normalized

 $X_{s} = \frac{X_{h} - \overline{x}}{\sigma_{x}}$

- Algorithms include:
 - Linear Prediction Filter
 - Multivariate Nearest Neighbor
 - Set-point Proximity Algorithms (SPPB and SPPE)
 - Consensus Algorithms
 - CAVE
 - CMAX
 - Binomial event Discriminator and Event Time-out
 - Pattern Matching based on historical data
 - Home-grown algorithms

SPOT

- Designed to solve generic placement problems
- Make decisions based on contaminant impact based on external data
- Allows for trade-offs between minimizing exposure, illness, spatial extent, detection time, and cost.
- Designed to solve complex systems (order of 10,000 pipes and junctions) on simple hardware (i.e. a desktop computer)
- Heuristic methods used to calculate mean impact sensor placement formulation

Reference

- Information and graphics from:
 - "Infrastructure Surety and Sustainability", Mike Hightower, Sandia National Labs (http://www3.abe.iastate.edu/biobased/Hightower.pdf)
 - Case Study Application of the CANARY Event Detection Software (Murray et al., 2010)
 - SPOT A Sensor Placement Optimization Tool for Drinking Water Contamination warning System Design (Hart et al. 2007)
 - CANARY User's Manaual v. 4.3 (Hart et al.)
 - (Hall et al., 2007) Hall, J, Zaffiro, AD, Marx, RB, Kefauver, PC, Krishnan, ER, Haught, RC & Herrmann, JG, "On-line water quality parameters as indicators of distribution system contamination", Journal of the American Water Works Association, vol 99, no. 1, pp. 66-77. 2007.

Reference

Additional Resources

- (McKenna et al., 2006) McKenna, SA, Klise, KA & Wilson, MP, "Testing water quality change detection algorithms", Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium (WDSA), ASCE, Cincinnatti OH. 2006.
- (Klise & McKenna, 2006b) Klise, KA & McKenna, SA, "Water quality change detection: multivariate algorithms", Proceedings of SPIE Defense and Security Symposium 2006, Internation Society for Optical Engineering (SPIE), Orlando FL. 2006
- (Hart et al., 2007) Hart, DB, McKenna, SA, Klise, KA, Cruz, VA & Wilson, MP, "CANARY: A water quality event detection algorithm development and testing tool", Proceedings of ASCE World Environmental and Water Resources Congress 2007, ASCE, Tampa FL. 2007.

Reference

- Additional Resources
 - https://software.sandia.gov/trac/canary
 - https://software.sandia.gov/trac/spot
 - http://www.sandia.gov/nisac/
 - http://www.epa.gov/nhsrc/news/news112607.html