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Last	
  ;me	
  on	
  Topics	
  in	
  Computa;onal	
  
Sustainability…	
  

•  We	
  saw	
  examples	
  of	
  different	
  Complex	
  Adap;ve	
  Systems	
  

–  Disease	
  control	
  in	
  Food/Animal	
  Systems	
  (Popula;on	
  
Medicine)	
  

–  Energy	
  grids,	
  social	
  networks,	
  ecosystems,	
  ocean/
atmosphere	
  systems,	
  etc.	
  

caida.org	
  
ecosystems.
noaa.gov	
  



Last	
  ;me	
  on	
  Topics	
  in	
  Computa;onal	
  
Sustainability…	
  

•  We	
  saw	
  the	
  System	
  Dynamics	
  approach	
  to	
  modeling	
  
CAS	
  

•  Systems	
  of	
  Ordinary	
  Differen;al	
  Equa;ons	
  (ODEs)	
  
model	
  the	
  flow	
  of	
  agents	
  between	
  different	
  stocks.	
  	
  	
  

•  Many	
  advantages:	
  	
  Easy	
  model	
  construc;on,	
  
parameteriza;on,	
  and	
  valida;on.	
  	
  Efficient	
  simula;on	
  
algorithms.	
  



System	
  Dynamics:	
  	
  The	
  Disadvantages	
  
•  The	
  assump;on	
  that	
  agents	
  are	
  essen;ally	
  homogenous.	
  	
  

•  Agent	
  state	
  space	
  has	
  one	
  variable	
  indica;ng	
  stock	
  
membership.	
  

•  What	
  about	
  addi;onal	
  biological,	
  social,	
  economic	
  state?	
  
•  Addi;onal	
  state	
  could	
  be	
  dependent	
  on	
  stock	
  membership.	
  	
  	
  
•  Can	
  only	
  target	
  interven-ons	
  based	
  on	
  stock-­‐membership.	
  

–  Can	
  be	
  uninforma;ve	
  to	
  policy-­‐makers.	
  
•  The	
  assump;on	
  that	
  agents	
  have	
  well-­‐mixed	
  interac-ons.	
  

–  Unrealis;c	
  representa;on	
  of	
  the	
  dynamics	
  of	
  many	
  CAS.	
  	
  



An	
  Alterna;ve:	
  	
  Agent-­‐Based	
  Modeling	
  

•  The	
  bo\om-­‐up	
  approach	
  
•  Agents	
  have	
  heterogeneous	
  state	
  space	
  updated	
  
through	
  local	
  interac;ons.	
  

•  Very	
  general,	
  high	
  expressive	
  power.	
  	
  
•  The	
  Cost:	
  
–  Bo\om-­‐up	
  construc;on,	
  parameteriza;on	
  and	
  
valida;on	
  is	
  difficult.	
  	
  	
  
•  Did	
  we	
  get	
  all	
  the	
  feedback	
  loops?	
  

–  Simula;on	
  can	
  have	
  high	
  ;me	
  and	
  memory	
  
requirements.	
  

– Models	
  o^en	
  become	
  applica;on	
  specific.	
  



Example:	
  	
  EpiSims	
  

– Highly	
  detailed	
  
– Virtual	
  laboratory	
  

www.sciam.com	
  

www.sciam.com	
  



Striking	
  a	
  Balance	
  

•  Goal:	
  	
  Combine	
  agent-­‐based	
  modeling	
  and	
  
system	
  dynamics	
  to	
  create	
  models	
  for	
  CAS	
  
that	
  retain	
  the	
  advantages	
  of	
  both	
  paradigms.	
  	
  	
  

•  Our	
  Solu-on:	
  	
  	
  
– Define	
  a	
  class	
  of	
  agent-­‐based	
  models	
  with	
  an	
  
embedded	
  system	
  dynamics	
  model.	
  	
  

– Give	
  a	
  simula;on	
  framework	
  for	
  these	
  models.	
  
•  Algorithm	
  for	
  model	
  simula;on.	
  
•  Seman;cs	
  of	
  simula;on	
  framework	
  specify	
  how	
  
embedding	
  occurs.	
  	
  



Our	
  Class	
  of	
  Embedded	
  Models	
  

•  We	
  define	
  an	
  embedded	
  model	
  as	
  a	
  tuple	
  M	
  =	
  (S,	
  
A,	
  O,	
  U,	
  D,	
  V)	
  

•  Let	
  Name	
  be	
  a	
  set	
  of	
  iden;fiers	
  
•  S	
  is	
  a	
  set	
  of	
  local	
  state	
  variable	
  names	
  
– Holds	
  general	
  agent	
  state	
  

•  A	
  is	
  a	
  set	
  of	
  ODE	
  state	
  variable	
  names	
  
– A	
  will	
  contain	
  one	
  variable	
  per	
  embedded	
  system	
  
dynamics	
  model	
  taking	
  values	
  that	
  name	
  stocks.	
  

•  Together,	
  S	
  and	
  A	
  divide	
  the	
  state	
  space	
  of	
  
agents.	
  



Our	
  Class	
  of	
  Embedded	
  Models	
  

•  We	
  define	
  an	
  embedded	
  model	
  as	
  a	
  tuple	
  M	
  =	
  (S,	
  A,	
  O,	
  
U,	
  D,	
  V)	
  

•  O	
  is	
  a	
  set	
  of	
  tuples	
  of	
  the	
  form	
  

(Name,	
  Name,	
  R)	
  

Specifying	
  the	
  rates	
  of	
  transi;on	
  between	
  stocks.	
  
•  Reserve	
  names	
  Gen	
  and	
  Des	
  for	
  the	
  source	
  of	
  
genera;ve	
  flow	
  and	
  des;na;on	
  of	
  destruc;ve	
  flow.	
  

•  O	
  specifies	
  the	
  embedded	
  system	
  dynamics	
  model.	
  



Our	
  Class	
  of	
  Embedded	
  Models	
  

•  We	
  define	
  an	
  embedded	
  model	
  as	
  a	
  tuple	
  M	
  =	
  (S,	
  
A,	
  O,	
  U,	
  D,	
  V)	
  

•  U	
  is	
  a	
  set	
  of	
  local	
  state	
  update	
  func-ons	
  
–  These	
  func;ons	
  model	
  agent	
  ac;ons	
  and	
  interac;ons.	
  

– May	
  read	
  an	
  agent's	
  local	
  state	
  and	
  ODE	
  state	
  
variables.	
  

–  Can	
  only	
  modify	
  an	
  agent's	
  local	
  state	
  variables.	
  

– May	
  suggest	
  the	
  genera;on	
  or	
  destruc;on	
  of	
  agents.	
  



Our	
  Class	
  of	
  Embedded	
  Models	
  

•  We	
  define	
  an	
  embedded	
  model	
  as	
  a	
  tuple	
  M	
  =	
  
(S,	
  A,	
  O,	
  U,	
  D,	
  V)	
  

•  D	
  is	
  a	
  set	
  of	
  demographic	
  func-ons	
  
– These	
  func;ons	
  accept	
  sugges;ons	
  on	
  agent	
  
genera;on	
  and	
  destruc;on.	
  

– May	
  read	
  an	
  agent's	
  local	
  state	
  and	
  ODE	
  state	
  
variables.	
  

– May	
  modify	
  the	
  exis;ng	
  popula;on	
  of	
  agents.	
  	
  



Our	
  Class	
  of	
  Embedded	
  Models	
  

•  We	
  define	
  an	
  embedded	
  model	
  as	
  a	
  tuple	
  M	
  =	
  
(S,	
  A,	
  O,	
  U,	
  D,	
  V)	
  

•  V	
  is	
  a	
  set	
  of	
  interven-on	
  func-ons	
  
– May	
  read	
  and	
  write	
  to	
  the	
  en;re	
  state	
  space	
  of	
  
agents.	
  

– May	
  modify	
  the	
  exis;ng	
  agent	
  popula;on.	
  
– Meant	
  to	
  model	
  high-­‐level	
  actors	
  with	
  influence	
  or	
  
control	
  over	
  the	
  CAS.	
  



Simula;on	
  framework	
  

•  Let	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  be	
  updatable	
  maps	
  from	
  agent	
  
and	
  variable	
  names	
  to	
  values.	
  

•  Let	
  	
  	
  	
  	
  be	
  the	
  current	
  popula;on	
  of	
  agents.	
  
•  Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  be	
  sets	
  that	
  hold	
  
sugges;ons	
  on	
  agent	
  genera;on	
  or	
  
destruc;on.	
  

Λ Θ

P

Pgen Pdes



Simula;on	
  Framework	
  

ODE system) and is Poisson distributed with parameter ri∆t

[Keeling and Rohani, 2008].
Our class of embedded models divides an agent’s state vari-

ables into two groups: local state variables that hold general
agent state and ODE state variables, one for each embed-
ded model, that take values corresponding to the stocks of the
ODE model. We use λ for local state variables, θ for ODE
state variables, and Λ and Θ for the updatable maps that store
the values of state variables for agents. Let Name denote a
datatype of identifiers (used to name variables, stocks, and
agents). We reserve the names Gen and Des for the source of
generative flow and the destination of destructive flow.

We define our class of embedded models as a tuple M =
(S, A,O,U,D, V ), such that:

1. S is a set of local state variables λ;
2. A is a set of ODE state variables θ;
3. O is a set of tuples of the form (Name,Name, R), spec-

ifying rates of flow in the ODE system (either between
stocks, from Gen to a stock, or from a stock to Des).

4. U is a set of local state update functions that use agent
actions and interactions to update local state variables λ
and suggest the generation or destruction of agents;

5. D is a set of demographic functions that resolve sugges-
tions on agent generation and destruction given by other
model components;

6. V is a set of intervention functions that can model high-
level actors by updating both local state variables and
ODE state variables.

Algorithm 2 Execution of one time step for our simulation
framework
Input: Embedded model M = (S, A,O,U,D, V ), set of

agent names P , local state map Λ and ODE state map Θ.
Pgen ← Pdes ← {}
for all local state update functions u ∈ U do

(Pgen, Pdes,Λ)← u(P, Pgen, Pdes,Λ,Θ)
end for
(Pgen, Pdes,Θ)← ODESimulation(O, Pgen, Pdes,Θ)
for all demography functions d ∈ D do

P ← d(P, Pgen, Pdes,Λ,Θ)
end for
for all intervention functions i ∈ V do

(P,Λ,Θ)← i(P,Λ,Θ)
end for

Algorithm 2 shows the simulation of an embedded model
for one time step, given an initial set of agents and their state
space. The algorithm enforces a set of data access rules; a
function can read a variable if it receives it as an argument
and can write by returning an updated copy. Functions in U

can read both local state and ODE state variables in Λ and Θ,
but can only update local state. We use ODESimulation to
denote an algorithm for simulating a system of ODEs (such
as the τ - leap method given in Algorithm 1). Such algorithms
may only read and write to the ODE state map Θ. Demog-
raphy functions in D can modify the set P of agents in the

system. Finally, intervention functions, in accordance with
their role in modeling high-level actors that influence the sys-
tem, can read and update the entire state space, as well as the
set P of agents in the system.

Algorithm 2 also shows how predictions on agent gener-
ation and destruction from different model components are
resolved. The sets Pgen and Pdes temporarily hold agents
predicted by functions in U or the ODE simulation for gener-
ation or destruction, respectively. Demography functions D

use these predictions to update the population of agents in P .
Finally, the ordering of Algorithm 2 specifies that interven-

tion functions update Λ, Θ, and P last, overriding changes
made by other model components. This facilitates the role
of intervention functions in modeling high-level actors like
policy-makers or researchers who can influence the system.

3.1 Examples of Embedded Models
We present two complex adaptive systems from Computa-
tional Sustainability and give the embedded models for these
systems. Our first example comes from ecology, where lo-

gistic equations are used to model the population dynam-
ics of species [Brauer and Castillo-Chavez, 2001]. Here we
are interested in a species that occupies a number of habitat
patches. Assume that for each habitat i there is a known car-

rying capacity Ki that gives the maximum population size
that habitat i can support. Let rgen be the rate at which the
species reproduces, and rij be the rate of migration between
habitats i and j. The change in the stock of species members
at habitat i is modeled as:

dNi

dt
=




�

j �=i

rjiNj + rgenNi




�

1− Ni

Ki

�
−

�

j �=i

rijNi

Species distribution models are often used to inform con-
servation efforts. One intervention commonly undertaken is
translocation, in which species members are transported into
a habitat with the hopes that they will survive, reproduce, and
bolster the population there. Species members could be trans-
ported from another habitat in the system, or introduced from
outside the system. System dynamics models translocation
with new flows occurring at specified rates. Conservationists,
however, may wish to model selection policies for transloca-
tion targets based on characteristics about the current habi-
tat population. On the other hand, a completely agent-based
model of species reproduction and migration would be diffi-
cult to construct and verify.

An embedded model (S, A,O,U,D, V ) can solve these
problems. Agents represent species members, and the set of
local state variables S holds data such as age, weight, or spa-
tial location within the habitat. A contains one ODE state
variable taking values corresponding to the i habitat spaces
from the ODE model, indicating which habitat a species
member occupies. O specifies the logistic equations intro-
duced above. The functions in U would model the biological
behavior of species members to evolve local state variables.
We assume that only the logistic equations provide sugges-
tions on agent generation and destruction, and so D contains
one function which accepts these suggestions. Finally, V con-
tains functions to model translocation. Such functions would
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ODE system) and is Poisson distributed with parameter ri∆t

[Keeling and Rohani, 2008].
Our class of embedded models divides an agent’s state vari-

ables into two groups: local state variables that hold general
agent state and ODE state variables, one for each embed-
ded model, that take values corresponding to the stocks of the
ODE model. We use λ for local state variables, θ for ODE
state variables, and Λ and Θ for the updatable maps that store
the values of state variables for agents. Let Name denote a
datatype of identifiers (used to name variables, stocks, and
agents). We reserve the names Gen and Des for the source of
generative flow and the destination of destructive flow.

We define our class of embedded models as a tuple M =
(S, A,O,U,D, V ), such that:

1. S is a set of local state variables λ;
2. A is a set of ODE state variables θ;
3. O is a set of tuples of the form (Name,Name, R), spec-

ifying rates of flow in the ODE system (either between
stocks, from Gen to a stock, or from a stock to Des).

4. U is a set of local state update functions that use agent
actions and interactions to update local state variables λ
and suggest the generation or destruction of agents;

5. D is a set of demographic functions that resolve sugges-
tions on agent generation and destruction given by other
model components;

6. V is a set of intervention functions that can model high-
level actors by updating both local state variables and
ODE state variables.

Algorithm 2 Execution of one time step for our simulation
framework
Input: Embedded model M = (S, A,O,U,D, V ), set of

agent names P , local state map Λ and ODE state map Θ.
Pgen ← Pdes ← {}
for all local state update functions u ∈ U do

(Pgen, Pdes,Λ)← u(P, Pgen, Pdes,Λ,Θ)
end for
(Pgen, Pdes,Θ)← ODESimulation(O, Pgen, Pdes,Θ)
for all demography functions d ∈ D do

P ← d(P, Pgen, Pdes,Λ,Θ)
end for
for all intervention functions i ∈ V do

(P,Λ,Θ)← i(P,Λ,Θ)
end for

Algorithm 2 shows the simulation of an embedded model
for one time step, given an initial set of agents and their state
space. The algorithm enforces a set of data access rules; a
function can read a variable if it receives it as an argument
and can write by returning an updated copy. Functions in U

can read both local state and ODE state variables in Λ and Θ,
but can only update local state. We use ODESimulation to
denote an algorithm for simulating a system of ODEs (such
as the τ - leap method given in Algorithm 1). Such algorithms
may only read and write to the ODE state map Θ. Demog-
raphy functions in D can modify the set P of agents in the

system. Finally, intervention functions, in accordance with
their role in modeling high-level actors that influence the sys-
tem, can read and update the entire state space, as well as the
set P of agents in the system.

Algorithm 2 also shows how predictions on agent gener-
ation and destruction from different model components are
resolved. The sets Pgen and Pdes temporarily hold agents
predicted by functions in U or the ODE simulation for gener-
ation or destruction, respectively. Demography functions D

use these predictions to update the population of agents in P .
Finally, the ordering of Algorithm 2 specifies that interven-

tion functions update Λ, Θ, and P last, overriding changes
made by other model components. This facilitates the role
of intervention functions in modeling high-level actors like
policy-makers or researchers who can influence the system.

3.1 Examples of Embedded Models
We present two complex adaptive systems from Computa-
tional Sustainability and give the embedded models for these
systems. Our first example comes from ecology, where lo-

gistic equations are used to model the population dynam-
ics of species [Brauer and Castillo-Chavez, 2001]. Here we
are interested in a species that occupies a number of habitat
patches. Assume that for each habitat i there is a known car-

rying capacity Ki that gives the maximum population size
that habitat i can support. Let rgen be the rate at which the
species reproduces, and rij be the rate of migration between
habitats i and j. The change in the stock of species members
at habitat i is modeled as:

dNi

dt
=




�

j �=i

rjiNj + rgenNi




�

1− Ni

Ki

�
−

�

j �=i

rijNi

Species distribution models are often used to inform con-
servation efforts. One intervention commonly undertaken is
translocation, in which species members are transported into
a habitat with the hopes that they will survive, reproduce, and
bolster the population there. Species members could be trans-
ported from another habitat in the system, or introduced from
outside the system. System dynamics models translocation
with new flows occurring at specified rates. Conservationists,
however, may wish to model selection policies for transloca-
tion targets based on characteristics about the current habi-
tat population. On the other hand, a completely agent-based
model of species reproduction and migration would be diffi-
cult to construct and verify.

An embedded model (S, A,O,U,D, V ) can solve these
problems. Agents represent species members, and the set of
local state variables S holds data such as age, weight, or spa-
tial location within the habitat. A contains one ODE state
variable taking values corresponding to the i habitat spaces
from the ODE model, indicating which habitat a species
member occupies. O specifies the logistic equations intro-
duced above. The functions in U would model the biological
behavior of species members to evolve local state variables.
We assume that only the logistic equations provide sugges-
tions on agent generation and destruction, and so D contains
one function which accepts these suggestions. Finally, V con-
tains functions to model translocation. Such functions would
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ODE system) and is Poisson distributed with parameter ri∆t

[Keeling and Rohani, 2008].
Our class of embedded models divides an agent’s state vari-

ables into two groups: local state variables that hold general
agent state and ODE state variables, one for each embed-
ded model, that take values corresponding to the stocks of the
ODE model. We use λ for local state variables, θ for ODE
state variables, and Λ and Θ for the updatable maps that store
the values of state variables for agents. Let Name denote a
datatype of identifiers (used to name variables, stocks, and
agents). We reserve the names Gen and Des for the source of
generative flow and the destination of destructive flow.

We define our class of embedded models as a tuple M =
(S, A,O,U,D, V ), such that:

1. S is a set of local state variables λ;
2. A is a set of ODE state variables θ;
3. O is a set of tuples of the form (Name,Name, R), spec-

ifying rates of flow in the ODE system (either between
stocks, from Gen to a stock, or from a stock to Des).

4. U is a set of local state update functions that use agent
actions and interactions to update local state variables λ
and suggest the generation or destruction of agents;

5. D is a set of demographic functions that resolve sugges-
tions on agent generation and destruction given by other
model components;

6. V is a set of intervention functions that can model high-
level actors by updating both local state variables and
ODE state variables.

Algorithm 2 Execution of one time step for our simulation
framework
Input: Embedded model M = (S, A,O,U,D, V ), set of

agent names P , local state map Λ and ODE state map Θ.
Pgen ← Pdes ← {}
for all local state update functions u ∈ U do

(Pgen, Pdes,Λ)← u(P, Pgen, Pdes,Λ,Θ)
end for
(Pgen, Pdes,Θ)← ODESimulation(O, Pgen, Pdes,Θ)
for all demography functions d ∈ D do

P ← d(P, Pgen, Pdes,Λ,Θ)
end for
for all intervention functions i ∈ V do

(P,Λ,Θ)← i(P,Λ,Θ)
end for

Algorithm 2 shows the simulation of an embedded model
for one time step, given an initial set of agents and their state
space. The algorithm enforces a set of data access rules; a
function can read a variable if it receives it as an argument
and can write by returning an updated copy. Functions in U

can read both local state and ODE state variables in Λ and Θ,
but can only update local state. We use ODESimulation to
denote an algorithm for simulating a system of ODEs (such
as the τ - leap method given in Algorithm 1). Such algorithms
may only read and write to the ODE state map Θ. Demog-
raphy functions in D can modify the set P of agents in the

system. Finally, intervention functions, in accordance with
their role in modeling high-level actors that influence the sys-
tem, can read and update the entire state space, as well as the
set P of agents in the system.

Algorithm 2 also shows how predictions on agent gener-
ation and destruction from different model components are
resolved. The sets Pgen and Pdes temporarily hold agents
predicted by functions in U or the ODE simulation for gener-
ation or destruction, respectively. Demography functions D

use these predictions to update the population of agents in P .
Finally, the ordering of Algorithm 2 specifies that interven-

tion functions update Λ, Θ, and P last, overriding changes
made by other model components. This facilitates the role
of intervention functions in modeling high-level actors like
policy-makers or researchers who can influence the system.

3.1 Examples of Embedded Models
We present two complex adaptive systems from Computa-
tional Sustainability and give the embedded models for these
systems. Our first example comes from ecology, where lo-

gistic equations are used to model the population dynam-
ics of species [Brauer and Castillo-Chavez, 2001]. Here we
are interested in a species that occupies a number of habitat
patches. Assume that for each habitat i there is a known car-

rying capacity Ki that gives the maximum population size
that habitat i can support. Let rgen be the rate at which the
species reproduces, and rij be the rate of migration between
habitats i and j. The change in the stock of species members
at habitat i is modeled as:

dNi

dt
=




�

j �=i

rjiNj + rgenNi




�

1− Ni

Ki

�
−

�

j �=i

rijNi

Species distribution models are often used to inform con-
servation efforts. One intervention commonly undertaken is
translocation, in which species members are transported into
a habitat with the hopes that they will survive, reproduce, and
bolster the population there. Species members could be trans-
ported from another habitat in the system, or introduced from
outside the system. System dynamics models translocation
with new flows occurring at specified rates. Conservationists,
however, may wish to model selection policies for transloca-
tion targets based on characteristics about the current habi-
tat population. On the other hand, a completely agent-based
model of species reproduction and migration would be diffi-
cult to construct and verify.

An embedded model (S, A,O,U,D, V ) can solve these
problems. Agents represent species members, and the set of
local state variables S holds data such as age, weight, or spa-
tial location within the habitat. A contains one ODE state
variable taking values corresponding to the i habitat spaces
from the ODE model, indicating which habitat a species
member occupies. O specifies the logistic equations intro-
duced above. The functions in U would model the biological
behavior of species members to evolve local state variables.
We assume that only the logistic equations provide sugges-
tions on agent generation and destruction, and so D contains
one function which accepts these suggestions. Finally, V con-
tains functions to model translocation. Such functions would
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ODE system) and is Poisson distributed with parameter ri∆t

[Keeling and Rohani, 2008].
Our class of embedded models divides an agent’s state vari-

ables into two groups: local state variables that hold general
agent state and ODE state variables, one for each embed-
ded model, that take values corresponding to the stocks of the
ODE model. We use λ for local state variables, θ for ODE
state variables, and Λ and Θ for the updatable maps that store
the values of state variables for agents. Let Name denote a
datatype of identifiers (used to name variables, stocks, and
agents). We reserve the names Gen and Des for the source of
generative flow and the destination of destructive flow.

We define our class of embedded models as a tuple M =
(S, A,O,U,D, V ), such that:

1. S is a set of local state variables λ;
2. A is a set of ODE state variables θ;
3. O is a set of tuples of the form (Name,Name, R), spec-

ifying rates of flow in the ODE system (either between
stocks, from Gen to a stock, or from a stock to Des).

4. U is a set of local state update functions that use agent
actions and interactions to update local state variables λ
and suggest the generation or destruction of agents;

5. D is a set of demographic functions that resolve sugges-
tions on agent generation and destruction given by other
model components;

6. V is a set of intervention functions that can model high-
level actors by updating both local state variables and
ODE state variables.

Algorithm 2 Execution of one time step for our simulation
framework
Input: Embedded model M = (S, A,O,U,D, V ), set of

agent names P , local state map Λ and ODE state map Θ.
Pgen ← Pdes ← {}
for all local state update functions u ∈ U do

(Pgen, Pdes,Λ)← u(P, Pgen, Pdes,Λ,Θ)
end for
(Pgen, Pdes,Θ)← ODESimulation(O, Pgen, Pdes,Θ)
for all demography functions d ∈ D do

P ← d(P, Pgen, Pdes,Λ,Θ)
end for
for all intervention functions i ∈ V do

(P,Λ,Θ)← i(P,Λ,Θ)
end for

Algorithm 2 shows the simulation of an embedded model
for one time step, given an initial set of agents and their state
space. The algorithm enforces a set of data access rules; a
function can read a variable if it receives it as an argument
and can write by returning an updated copy. Functions in U

can read both local state and ODE state variables in Λ and Θ,
but can only update local state. We use ODESimulation to
denote an algorithm for simulating a system of ODEs (such
as the τ - leap method given in Algorithm 1). Such algorithms
may only read and write to the ODE state map Θ. Demog-
raphy functions in D can modify the set P of agents in the

system. Finally, intervention functions, in accordance with
their role in modeling high-level actors that influence the sys-
tem, can read and update the entire state space, as well as the
set P of agents in the system.

Algorithm 2 also shows how predictions on agent gener-
ation and destruction from different model components are
resolved. The sets Pgen and Pdes temporarily hold agents
predicted by functions in U or the ODE simulation for gener-
ation or destruction, respectively. Demography functions D

use these predictions to update the population of agents in P .
Finally, the ordering of Algorithm 2 specifies that interven-

tion functions update Λ, Θ, and P last, overriding changes
made by other model components. This facilitates the role
of intervention functions in modeling high-level actors like
policy-makers or researchers who can influence the system.

3.1 Examples of Embedded Models
We present two complex adaptive systems from Computa-
tional Sustainability and give the embedded models for these
systems. Our first example comes from ecology, where lo-

gistic equations are used to model the population dynam-
ics of species [Brauer and Castillo-Chavez, 2001]. Here we
are interested in a species that occupies a number of habitat
patches. Assume that for each habitat i there is a known car-

rying capacity Ki that gives the maximum population size
that habitat i can support. Let rgen be the rate at which the
species reproduces, and rij be the rate of migration between
habitats i and j. The change in the stock of species members
at habitat i is modeled as:

dNi

dt
=




�

j �=i

rjiNj + rgenNi




�

1− Ni

Ki

�
−

�

j �=i

rijNi

Species distribution models are often used to inform con-
servation efforts. One intervention commonly undertaken is
translocation, in which species members are transported into
a habitat with the hopes that they will survive, reproduce, and
bolster the population there. Species members could be trans-
ported from another habitat in the system, or introduced from
outside the system. System dynamics models translocation
with new flows occurring at specified rates. Conservationists,
however, may wish to model selection policies for transloca-
tion targets based on characteristics about the current habi-
tat population. On the other hand, a completely agent-based
model of species reproduction and migration would be diffi-
cult to construct and verify.

An embedded model (S, A,O,U,D, V ) can solve these
problems. Agents represent species members, and the set of
local state variables S holds data such as age, weight, or spa-
tial location within the habitat. A contains one ODE state
variable taking values corresponding to the i habitat spaces
from the ODE model, indicating which habitat a species
member occupies. O specifies the logistic equations intro-
duced above. The functions in U would model the biological
behavior of species members to evolve local state variables.
We assume that only the logistic equations provide sugges-
tions on agent generation and destruction, and so D contains
one function which accepts these suggestions. Finally, V con-
tains functions to model translocation. Such functions would



Embedded	
  Model:	
  	
  Examples	
  

•  Embedded	
  models	
  can	
  be	
  used	
  for	
  many	
  CAS	
  
– Species	
  distribu;on	
  in	
  ecosystems,	
  informa;on	
  
dispersion	
  in	
  a	
  network,	
  energy	
  grids,	
  etc.	
  

•  We	
  give	
  two	
  examples	
  of	
  CAS	
  from	
  
epidemiology	
  that	
  highlight	
  the	
  advantages	
  of	
  
an	
  embedded	
  model.	
  
– Sexually	
  Transmi\ed	
  Infec;ons	
  (STI)	
  

–  Johne's	
  Disease	
  (MAP)	
  



STIs	
  and	
  the	
  well-­‐mixed	
  assump;on.	
  

•  WHO	
  es;mates	
  1	
  million	
  people	
  infected	
  daily.	
  
•  Epidemics	
  like	
  HIV/AIDS	
  impact	
  world	
  health	
  
and	
  economy.	
  

•  Well-­‐mixed	
  assump;on	
  is	
  fine	
  for	
  disease	
  
progression.	
  

•  Is	
  it	
  valid	
  for	
  transmission?	
  

Suscep;ble	
   Infected	
   Recovered	
  

β γ



STIs	
  and	
  the	
  well-­‐mixed	
  assump;on.	
  

•  Sexual	
  contact	
  network	
  in	
  South	
  Wales	
  
•  Network	
  exhibits	
  “small	
  world”	
  proper;es	
  but	
  is	
  
not	
  well-­‐mixed	
  



STIs	
  and	
  targe;ng	
  interven;ons	
  

•  O^en,	
  interven;ons	
  to	
  control	
  STI	
  outbreaks	
  target	
  agents	
  
based	
  on	
  their	
  contact	
  network	
  (contact	
  tracing)	
  

•  How	
  can	
  you	
  model	
  contact	
  tracing	
  with	
  system	
  dynamics?	
  



STIs	
  and	
  targe;ng	
  interven;ons	
  

•  Interven;ons	
  also	
  targeted	
  at	
  loca-ons.	
  
– Addi;onal	
  state	
  una\ainable	
  with	
  ODE	
  model.	
  

social venues, such as the motel bar in this study, may be
essential and, in this case, the only factor defining individuals
at risk of infection. Secondly, our findings confirm that
sexual network analysis can allow the linkage of seemingly
isolated outbreaks from geographically distant commu-
nities.16 This notion also emphasises the fact that targeting
individuals in isolation, rather than considering their
complete sexual space and geography,3 17 may limit the
impact of interventions. On a practical note, we confirm that
asking clients about local ‘‘pickup joints’’ is successful in

delineating the extent and pattern of gonorrhoea transmis-
sion within sexual networks, while allowing access to a
greater proportion of the population at risk. This may be
because some STI clients are more willing to name places
rather than people with whom they have had sexual contact.
The naming of partnering locations enhances patient recall18

and can concurrently improve contact tracing yield.
To our knowledge, this is the first empirical study to

demonstrate conclusively that people at highest risk of
infection (that is, those who attended the bar) also hold

Figure 1 Largest component (n = 39) within the sexual networks. A
prefix to the unique identifier of ‘‘m’’ designates a male and ‘‘f’’
indicates a female sexual partner.

Table 3 Characteristics and centrality measures of
gonorrhoea index cases who were bar patrons compared
with non-bar patrons, belonging to components of size 4
or greater

Attended bar
(n = 9)

Did no attend bar
(n = 18)

p ValueNo (%) No (%)

Sex
Male 2 (22.2) 5 (27.8) 1.0
Female 7 (77.8) 13 (83.3)

Age (years)
Median
(interquartile range)

24 (22–32) 20 (16–26) 0.04

Residence
Community A 1 (11.1) 0 (0) 0.15
Community B 5 (55.6) 14 (77.8)
Community C 3 (33.3) 2 (11.1)

Ethnicity
White 1 (11.1) 0 (0) 0.33
Aboriginal 8 (88.9) 18 (100)

Infection characteristics
Co-infection with
chlamydia

4 (44.4) 8 (44.4) 1.00

Re-infection with
gonorrhoea

1 (11.1) 1 (5.6) 1.00

Centrality measures
Median degree
centrality (range)

2 (1–3) 1.5 (1–2) 0.43

Median betweenness
centrality (range)

3 (0–19) 1.5 (0–37) 0.19

Median information
centrality (range)

50 (36–63) 35 (29–50) 0.05

Figure 2 Network members (n = 89)
viewed by their connection through a
bar associated with gonorrhoea
acquisition. A prefix to the unique
identifier of ‘‘m’’ designates a male and
‘‘f’’ indicates a female sexual partner.
Bar patrons possessed significantly
higher information centrality measures
compared to non-patrons (table 3).
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MAP	
  and	
  modeling	
  control	
  

•  Ques;on:	
  	
  What	
  are	
  the	
  	
  	
  	
  	
  	
  	
  	
  s	
  modeling?	
  µ



MAP	
  and	
  modeling	
  control	
  

•  Answer:	
  
–  Animal	
  death	
  and	
  farmer	
  management	
  ac-ons	
  	
  
–  Farmer	
  primarily	
  controls	
  farm	
  by	
  buying	
  and	
  selling	
  animals.	
  
–  Animal's	
  economic	
  value	
  plays	
  strong	
  role	
  in	
  farmer's	
  decisions.	
  
–  Main	
  objec;ve	
  is	
  to	
  make	
  the	
  most	
  profit,	
  not	
  to	
  control	
  disease.	
  

•  New	
  management	
  policies	
  might	
  be	
  developed.	
  



Embedded	
  Model	
  for	
  MAP	
  

•  An	
  embedded	
  model	
  solves	
  many	
  of	
  these	
  problems.	
  
•  Agent-­‐based	
  ac;ons	
  can	
  model	
  farmer’s	
  management	
  
policies.	
  

•  Extra	
  economic	
  state	
  can	
  be	
  maintained	
  for	
  agents.	
  
–  Total	
  milk	
  produc;on,	
  reproduc;ve	
  history,	
  current	
  
pregnancy	
  status,	
  etc.	
  

– Milk	
  produc;on	
  and	
  reproduc;ve	
  func;ons	
  dependent	
  on	
  
MAP	
  status.	
  

–  Op;miza;on!	
  

•  Management	
  policies	
  can	
  be	
  implemented	
  
mechanis;cally	
  as	
  in	
  reality.	
  	
  



Embedded	
  Model	
  for	
  MAP	
  

•  M	
  =	
  (S,	
  A,	
  O,	
  U,	
  D,	
  V)	
  
•  S	
  names	
  local	
  state	
  variables	
  that	
  hold	
  
biological/economic	
  data	
  on	
  cows.	
  

•  A	
  names	
  one	
  variable	
  that	
  holds	
  current	
  MAP	
  
disease	
  status.	
  	
  

•  O	
  specifies	
  the	
  MAP	
  ODE	
  model.	
  



Embedded	
  Model	
  for	
  MAP	
  

•  M	
  =	
  (S,	
  A,	
  O,	
  U,	
  D,	
  V)	
  
•  The	
  local	
  update	
  func;ons	
  U	
  maintain	
  
addi;onal	
  agent	
  state.	
  
– Agent's	
  reproduc;ve	
  status	
  updated	
  according	
  to	
  
farm	
  policies	
  and	
  biology.	
  

– Agent's	
  milk	
  produc;on	
  is	
  tracked,	
  and	
  influenced	
  
by	
  disease	
  state.	
  

– Agent	
  reproduc;on	
  sugges;ons	
  the	
  genera;on	
  of	
  
new	
  agents.	
  



Embedded	
  Model	
  for	
  MAP	
  

•  M	
  =	
  (S,	
  A,	
  O,	
  U,	
  D,	
  V)	
  
•  The	
  demographic	
  func;ons	
  D	
  model	
  basic	
  
farmer	
  management	
  decisions.	
  
– Rou;ne	
  buying	
  and	
  selling	
  of	
  animals.	
  	
  	
  
– Value	
  for	
  each	
  agent	
  computed	
  based	
  on	
  their	
  
current	
  state	
  (economic	
  value).	
  

– Low	
  value	
  agents	
  are	
  removed	
  from	
  herd	
  to	
  make	
  
room	
  for	
  new	
  agents.	
  



Embedded	
  Model	
  for	
  MAP	
  

•  M	
  =	
  (S,	
  A,	
  O,	
  U,	
  D,	
  V)	
  
•  The	
  interven;on	
  func;ons	
  V	
  model	
  controlling	
  
for	
  MAP	
  
– Farmer	
  tests	
  for	
  MAP	
  every	
  six	
  months.	
  
– Two	
  control	
  policies:	
  

•  Test-­‐and-­‐Cull:	
  	
  Farmer	
  removes	
  test	
  posi;ve	
  cows	
  from	
  
herd	
  when	
  they're	
  spo\ed.	
  

• Milk-­‐Test-­‐and-­‐Cull:	
  	
  Remove	
  test	
  posi;ve	
  cows	
  from	
  
herd,	
  but	
  delay	
  the	
  removal	
  of	
  cows	
  with	
  high	
  milk	
  
produc;on.	
  	
  



Experimental	
  Setup	
  

•  Implemented	
  simula;on	
  framework	
  in	
  Java.	
  	
  	
  
•  Constructed	
  an	
  embedded	
  model	
  for	
  MAP	
  on	
  
dairy	
  farms.	
  

•  Ran	
  3	
  sets	
  of	
  100,000	
  simula;ons:	
  
–  50	
  year	
  run-­‐up	
  period	
  to	
  obtain	
  endemic	
  equilibrium	
  
–  Control	
  strategy	
  used	
  for	
  next	
  25	
  years:	
  

•  No	
  control,	
  Test-­‐and-­‐Cull,	
  Milk-­‐Test-­‐and-­‐Cull	
  

•  Ques&on:	
  	
  Does	
  the	
  model	
  produce	
  accurate	
  
disease	
  dynamics?	
  

•  Ques&on:	
  	
  Which	
  control	
  strategy	
  is	
  "best”?	
  



Results:	
  	
  Disease	
  Dynamics	
  

•  Each	
  line	
  gives	
  prevalence	
  of	
  MAP	
  at	
  five	
  year	
  intervals	
  
under	
  no	
  control.	
  

•  Distribu;ons	
  of	
  results	
  for	
  both	
  models	
  are	
  close.	
  
•  ODE	
  results	
  known	
  to	
  be	
  valid.	
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Results:	
  	
  Disease	
  eradica;on	
  

•  Both	
  Test-­‐and-­‐Cull	
  and	
  Milk-­‐Test-­‐and-­‐Cull	
  result	
  in	
  
fadeout.	
  	
  	
  

•  Milk-­‐Test-­‐and-­‐Cull,	
  on	
  average,	
  has	
  slower	
  
fadeout.	
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Results:	
  	
  Milk	
  Produc;on	
  

•  Milk-­‐Test-­‐and-­‐Cull	
  has	
  short-­‐term	
  gains	
  but	
  
may	
  have	
  long-­‐term	
  costs.	
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Results:	
  	
  Milk	
  Produc;on	
  

•  In	
  the	
  long	
  term,	
  both	
  strategies	
  have	
  similar	
  
performance	
  for	
  total	
  milk	
  produc;on.	
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Conclusions	
  on	
  Control	
  Strategies:	
  

•  Both	
  Test-­‐and-­‐Cull	
  and	
  Milk-­‐Test-­‐and-­‐Cull	
  result	
  in	
  
MAP	
  eradica;on.	
  

•  Both	
  Test-­‐and-­‐Cull	
  and	
  Milk-­‐Test-­‐and-­‐Cull	
  have	
  
short-­‐term	
  costs.	
  
– Milk-­‐Test-­‐and-­‐Cull	
  mi;gates	
  these	
  costs.	
  	
  	
  

•  Both	
  strategies	
  have	
  similar	
  long-­‐term	
  
performance	
  for	
  milk	
  produc;on.	
  

•  Conclusion:	
  	
  Milk-­‐Test-­‐and-­‐Cull	
  can	
  be	
  used	
  to	
  
control	
  MAP	
  and	
  mi-gate	
  the	
  short-­‐term	
  costs	
  of	
  
control	
  without	
  sacrificing	
  long-­‐term	
  gains.	
  	
  



Future	
  work:	
  
•  New	
  embedded	
  models:	
  Computa;onal	
  
Sustainability	
  seeks	
  to	
  influence	
  many	
  CAS.	
  
– Species	
  distribu;on	
  and	
  social	
  networks.	
  

•  Op;miza;on:	
  
– Op;miza;on	
  problem	
  is	
  computa;onally	
  difficult,	
  and	
  
seeks	
  to	
  find	
  an	
  op-mal	
  policy	
  func-on	
  

– Example	
  for	
  MAP:	
  	
  	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  a	
  policy	
  func;on	
  that	
  given	
  the	
  state	
  space	
  of	
  
all	
  agents,	
  returns	
  a	
  set	
  of	
  agents	
  to	
  cull.	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  an	
  op;mal	
  policy	
  func;on	
  that	
  given	
  the	
  state	
  
space	
  of	
  all	
  agents,	
  returns	
  a	
  set	
  of	
  agents	
  to	
  cull	
  that	
  is	
  
op;mal	
  in	
  regards	
  to	
  economic	
  output.	
  

– Techniques	
  from	
  Machine	
  Learning	
  and	
  Game	
  Playing	
  
could	
  be	
  very	
  useful!	
  

Ψ(Λ,Θ)

Ψ∗(Λ,Θ)


