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Last time on Toplcs in Computa’uonal

 We saw examples of different Complex Adaptlve Systems

— Disease control in Food/Animal Systems (Population
Medicine)

— Energy grids, social networks, ecosystems, ocean/
atmosphere systems, etc.
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Last time on Toplcs N Computatlonal

* We saw the System Dynamics approach to modeling
CAS

» Systems of Ordinary Differential Equations (ODEs)
model the flow of agents between different stocks.

* Many advantages: Easy model construction,

parameterization, and validation. Efficient simulation
algorithms.




System Dynamics: The Disadvantages

 The assumption that agents are essentially homogenous.

Agent state space has one variable indicating stock
membership.

What about additional biological, social, economic state?
Additional state could be dependent on stock membership.

Can only target interventions based on stock-membership.
— Can be uninformative to policy-makers.

The assumption that agents have well-mixed interactions.
— Unrealistic representation of the dynamics of many CAS.




An Alternative: Agent-Based Modeling

The bottom-up approach

Agents have heterogeneous state space updated
through local interactions.

Very general, high expressive power.

The Cost:

— Bottom-up construction, parameterization and
validation is difficult.

* Did we get all the feedback loops?

— Simulation can have high time and memory
requirements.

— Models often become application specific.




Example: EpiSims
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Striking a Balance

* Goal: Combine agent-based modeling and
system dynamics to create models for CAS
that retain the advantages of both paradigms.

* Our Solution:
— Define a class of agent-based models with an
embedded system dynamics model.
— Give a simulation framework for these models.

* Algorithm for model simulation.

* Semantics of simulation framework specify how
embedding occurs.




Our Class of Embedded Models

We define an embedded model as a tuple M = (§,
A O, U, D,V)
Let Name be a set of identifiers
S is a set of local state variable names
— Holds general agent state

A is a set of ODE state variable names

— A will contain one variable per embedded system
dynamics model taking values that name stocks.

Together, S and A divide the state space of
agents.




Our Class of Embedded Models

We define an embedded model as a tuple M = (S, A, O,
U, D, V)

O is a set of tuples of the form
(Name, Name, R)

Specifying the rates of transition between stocks.

Reserve names Gen and Des for the source of
generative flow and destination of destructive flow.

O specifies the embedded system dynamics model.




Our Class of Embedded Models

 We define an embedded model as a tuple M = (S,
A O, U,D,V)
 Uis a set of local state update functions
— These functions model agent actions and interactions.

— May read an agent's local state and ODE state
variables.

— Can only modify an agent's local state variables.
— May suggest the generation or destruction of agents.




Our Class of Embedded Models

 We define an embedded model as a tuple M =
(S,A,0,U,D,V)
* Dis a set of demographic functions

— These functions accept suggestions on agent
generation and destruction.

— May read an agent's local state and ODE state
variables.

— May modify the existing population of agents.




Our Class of Embedded Models

 We define an embedded model as a tuple M =
(S,A,0,U,D,V)
* Vs a set of intervention functions

— May read and write to the entire state space of
agents.

— May modify the existing agent population.

— Meant to model high-level actors with influence or
control over the CAS.




Simulation framework

e Let and be updatable maps from agent
and variable names to values.

 Let be the current population of agents.

e Let and be sets that hold
suggestions on agent generation or
destruction.




Simulation Framework

Algorithm 2 Execution of one time step for our simulation
framework
Input: Embedded model M = (S5,4,0,U,D,V), set of
agent names P, local state map A and ODE state map O.
Pgen<_Pdes<_{}
for all local state update functions u € U do
(Pgen7 Pdes; A) — u(Pa Pgena Pdes; Aa @)
end for
(Pyen, Pies, ©) «—<ODESimulation(O, Pyey, Pics, OF
for all demography functions d € D do
P — d(P7 Pgena Pdes; Aa @)
end for
for all intervention functionsz € V' do
(P,A,0) «— i(P,A,0)
end for




Simulation Framework: Data Access

Algorithm 2 Execution of one time step for our simulation
framework
Input: Embedded model M = (S5,4,0,U,D,V), set of
agent names P, local state map A and ODE state map O.
Pgen<_Pdes<_{}
for all local state update functions u € U do
qpqeny Pdes; A) — u(Pa Pgena Pdes; Aa (D
end for
< (Pyen, Pies, ©) «— ODESimulation(O, Py, Pyes, ©
for all demography functions d € D do
P — d(P7 Pgena Pdes; Aa @)
end for
for all intervention functionsz € V_ do
< (P,A,0) —i(P,A,0) -

end for




Simulation Framework: Demographics

Algorithm 2 Execution of one time step for our simulation

framework

Input: Embedded model M = (S5,4,0,U,D,V), set of
agent names P, local state map A and ODE state map O.
Pgen<_Pd68<_{}

for state update functions u € U do
(Pgen7 Pdes; AP u(Pa Pgena Pdes; Aa @)

en

(Pyen, Pies, © ODESimulation(O, Py, Pyes, O)

for all demography functions d € D do
<P<—d(P7PgenanesaAa@) >

end for

for all intervention functionsz € V' do

(P,A,0) «— i(P,A,0)
end for




Simulation Framework: Interventions

Algorithm 2 Execution of one time step for our simulation
framework
Input: Embedded model M = (S5,4,0,U,D,V), set of
agent names P, local state map A and ODE state map O.
Pgen<_Pdes<_{}
for all local state update functions u € U do
(Pgen7 Pdes; A) — u(Pa Pgena Pdes; Aa @)
end for
(Pyens Paes, ©) «— ODESimulation(O, Py, Pyes, ©)
for all demography functions d € D do
P — d(P7 Pgena Pdes; Aa @)
end for
or all intervention functions ¢z € V' do
(P,A,0) «— i(P,A,0)
end for




Embedded Model: Examples

* Embedded models can be used for many CAS

— Species distribution in ecosystems, information
dispersion in a network, energy grids, etc.

* We give two examples of CAS from
epidemiology that highlight the advantages of
an embedded model.

— Sexually Transmitted Infections (STI)
— Johne's Disease (MAP)




STls and the well-mixed assumption.

* WHO estimates 1 million people infected daily.

* Epidemics like HIV/AIDS impact world health
and economy.

* Well-mixed assumption is fine for disease
progression.

e |s it valid for transmission?




STlIs and the well-mixed assumption.

B New diagnosis HIV

e Sexual contact network in South Wales

* Network exhibits “small world” properties but is
not well-mixed




STls and targeting interventions

B New diagnosis

[ HIV negative ] [] B
W Previous ly diagnosed HIV []

[ Contacted but outcome unknown

[] Uncontactable

e Often, interventions to control STl outbreaks target agents
based on their contact network (contact tracing)

 How can you model contact tracing with system dynamics?




STls and targeting interventions

* Interventions also targeted at locations.
— Additional state unattainable with ODE model.




MAP and modeling control

* Question: What are the s modeling?




MAP and modeling control

e Answer:

— Animal death and farmer management actions
— Farmer primarily controls farm by buying and selling animals.
— Animal's economic value plays strong role in farmer's decisions.

— Main objective is to make the most profit, not to control disease.
 New management policies might be developed.




Embedded Model for MAP

 An embedded model solves many of these problems.

* Agent-based actions can model farmer’s management
policies.
* Extra economic state can be maintained for agents.

— Total milk production, reproductive history, current
pregnancy status, etc.

— Milk production and reproductive functions dependent on
MAP status.

— Optimization!

* Management policies can be implemented
mechanistically as in reality.




Embedded Model for MAP

M=(S,A 0O,U,D,V)

S names local state variables that hold
biological/economic data on cows.

A names one variable that holds current MAP
disease status.

O specifies the MAP ODE model.




Embedded Model for MAP

e M=(S,A 0O, U, D, V)
* The local update functions U maintain
additional agent state.

— Agent's reproductive status updated according to
farm policies and biology.

— Agent's milk production is tracked, and influenced
by disease state.

— Agent reproduction suggestions the generation of
new agents.




Embedded Model for MAP

e M=(S,A 0O, U, D, V)
* The demographic functions D model basic
farmer management decisions.

— Routine buying and selling of animals.

— Value for each agent computed based on their
current state (economic value).

— Low value agents are removed from herd to make
room for new agents.




Embedded Model for MAP

* M=(5,A,0,UD,YV)

* The intervention functions V model controlling
for MAP

— Farmer tests for MAP every six months.

— Two control policies:

* Test-and-Cull: Farmer removes test positive cows from
herd when they're spotted.

* Milk-Test-and-Cull: Remove test positive cows from
herd, but delay the removal of cows with high milk
production.




Experimental Setup

Implemented simulation framework in Java.

Constructed an embedded model for MAP on
dairy farms.

Ran 3 sets of 100,000 simulations:

— 50 year run-up period to obtain endemic equilibrium

— Control strategy used for next 25 years:
* No control, Test-and-Cull, Milk-Test-and-Cull

Question: Does the model produce accurate
disease dynamics?

Question: Which control strategy is "best”?




Results: Disease Dynamics

Empirical CDF of MAP Prevalence in Herd
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Each line gives prevalence of MAP at five year intervals
under no control.

Distributions of results for both models are close.
ODE results known to be valid.



Results: Disease eradication

Mean MAP Prevalence
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e Both Test-and-Cull and Milk-Test-and-Cull result in
fadeout.

* Milk-Test-and-Cull, on average, has slower
fadeout.




Results: Milk Production
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Milk-Test-and-Cull has short-term gains but
may have long-term costs.




Results: Milk Production
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In the long term, both strategies have similar
performance for total milk production.




Conclusions on Control Strategies:

Both Test-and-Cull and Milk-Test-and-Cull result in
MAP eradication.

Both Test-and-Cull and Milk-Test-and-Cull have
short-term costs.
— Milk-Test-and-Cull mitigates these costs.

Both strategies have similar long-term
performance for milk production.

Conclusion: Milk-Test-and-Cull can be used to
control MAP and mitigate the short-term costs of
control without sacrificing long-term gains.




Future work:
* New embedded models: Computational
Sustainability seeks to influence many CAS.

— Species distribution and social networks.

* Optimization:
— Optimization problem is computationally difficult, and
seeks to find an optimal policy function

— Example for MAP:

. is a policy function that given the state space of
all agents, returns a set of agents to cull.

. is an optimal policy function that given the state
space of all agents, returns a set of agents to cull that is
optimal in regards to economic output.

— Techniques from Machine Learning and Game Playing
could be very useful!




