System Dynamics for Complex Adaptive Systems

Kiyan Ahmadizadeh, Maarika Teose, Carla Gomes, Yrjo Grohn, Steve Ellner, Eoin O'Mahony, Becky Smith, Zhao Lu, Becky Mitchell

Outline

- Complex Adaptive Systems
- Modeling paradigms
 - System Dynamics
 - Population Growth
 - Epidemiology
 - Agent-based Modeling
 - Strengths/weaknesses of each
- Embedded (Hybrid) Models

Complex Adaptive Systems

"The whole is not only more than but very different than the sum of its parts."

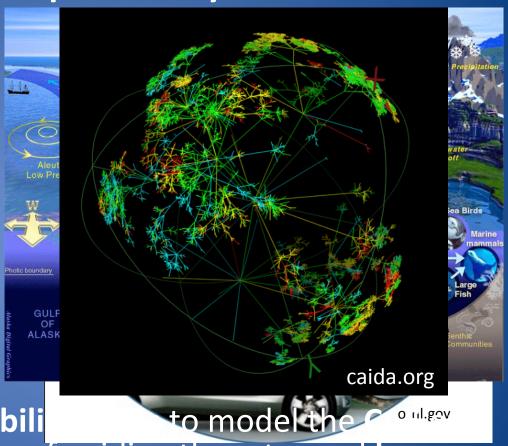
- **Dynamic** network of many agents (e.g. cells, species, individuals, firms, nations) acting in parallel, constantly acting and reacting to what the other agents are doing
- Control of CAS is dispersed, decentralized
- <u>Emergent</u> behaviors (e.g. equilibria, patterns) arise from competition and cooperation among agents

System behavior is unpredictable and the result of decisions made every moment by many individual agents

Complex Adaptive Systems

Examples:

- Energy grids
- Ecosystems
- Social diffusion
- Disease dynamics
- Politics
- Supply chain networks
- Etc.

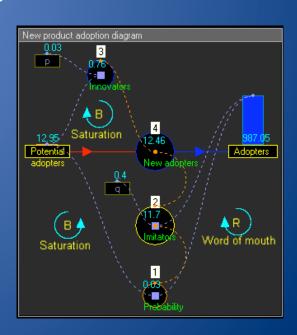


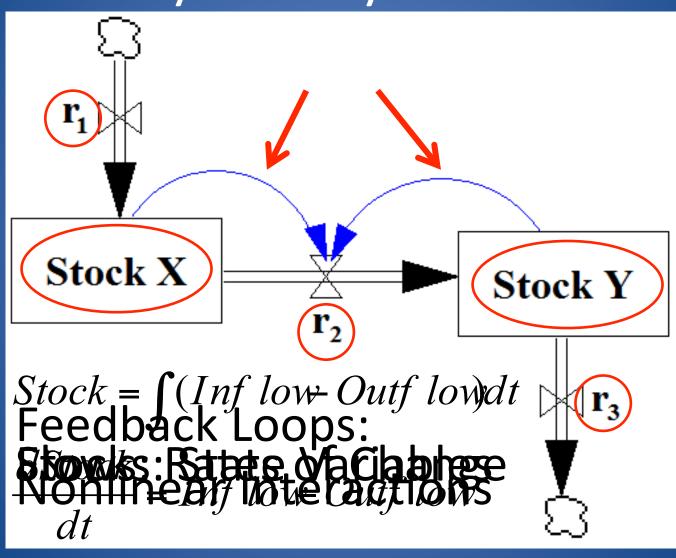
Computational Sustainabili

our world in the hopes of guiding them toward longterm, sustainable outcomes

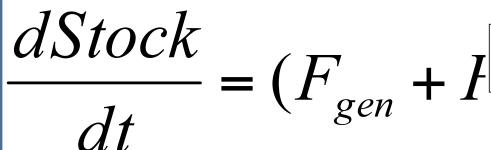
Modeling CAS

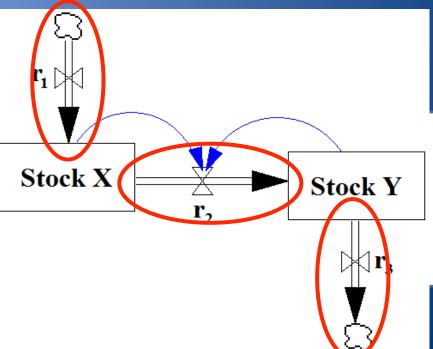
- Two basic approaches:
 - Top-down: System Dynamics
 - ODEs, Stock and Flow Diagrams
 - Bottom-up: Agent-based Modeling
 - Cellular Automata, Intelligent Agents



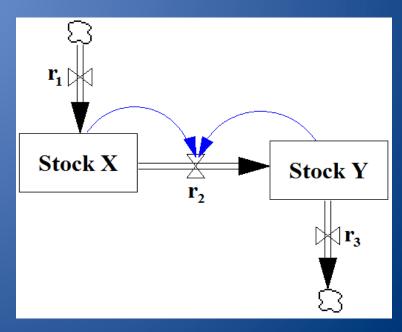


- Flows can be of three types:
 - Generative (F_{gen})
 - Stock-to-Stock (Fin, Fout)
 - Destructive (Fdes)





- Discrete systems:
 - Stocks: homogenous groups of well-mixed agents
 - Flows: movement of agents between groups
 - Feedback Loops: nonlinear interactions and effects
 - $r_2 = f(X,Y)$



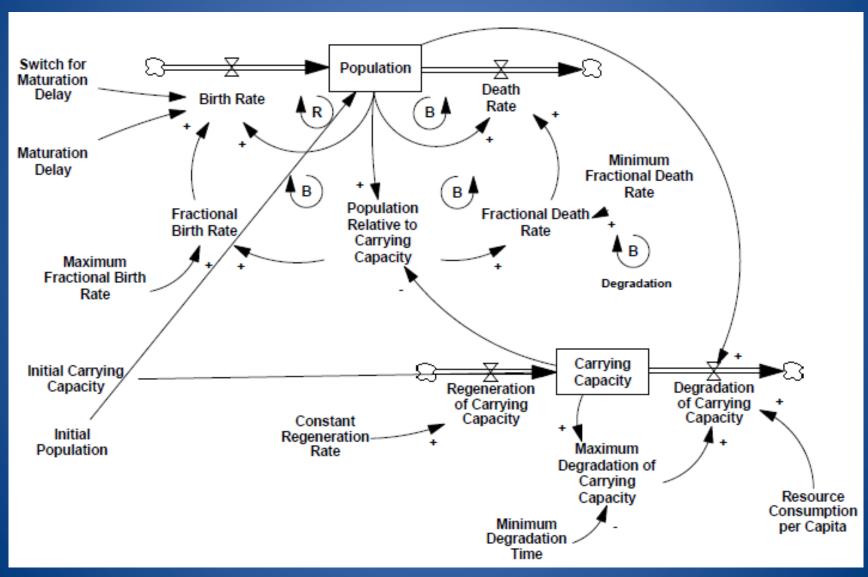
Example 1: Population Growth

$$\frac{dP}{dt} = rP \left(1 - \frac{P}{K}\right) \begin{array}{l} \bullet P - \text{population size a time } t \\ \bullet r - \text{growth rate} \\ \bullet K - \text{habitat carrying capacity} \end{array}$$

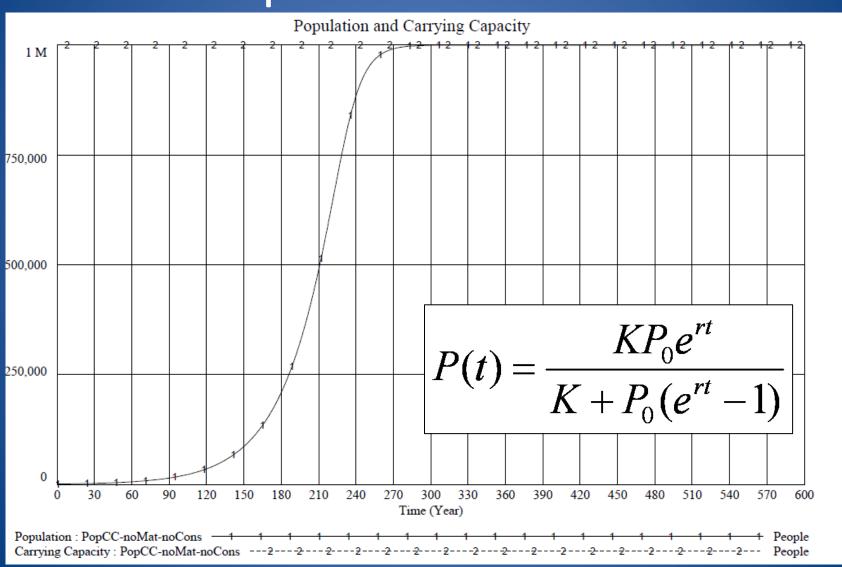
- P population size at
- capacity

- Exponential growth when population is small
- Exponential decay when population above K

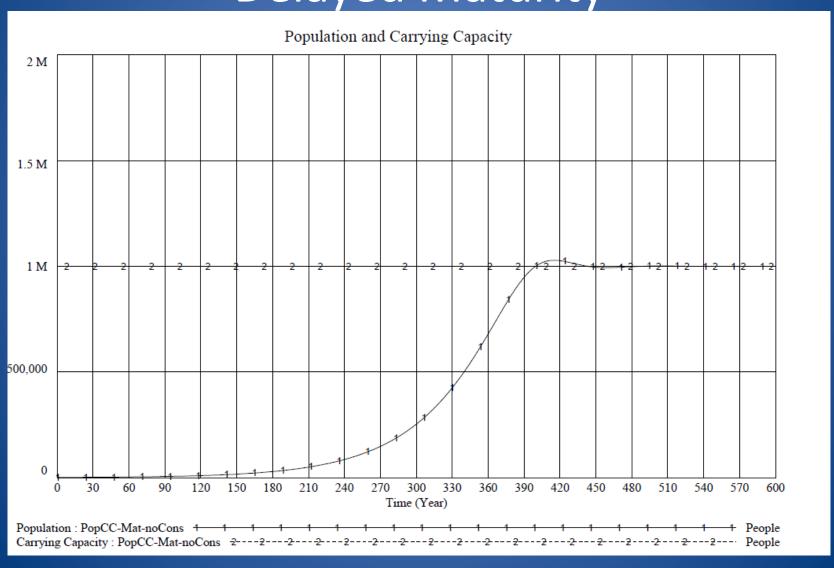
Population Growth



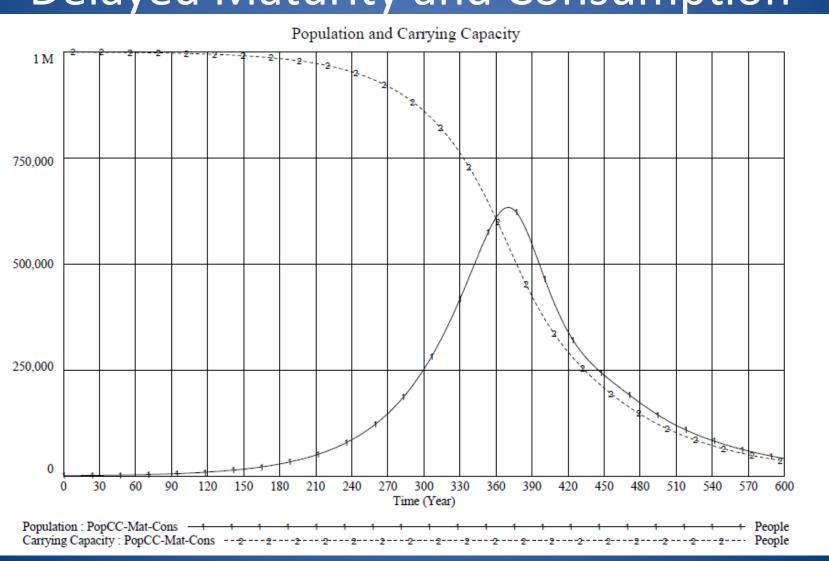
Population Growth



Population Growth: Delayed Maturity



Population Growth: Delayed Maturity and Consumption



Example 2: Infectious Disease

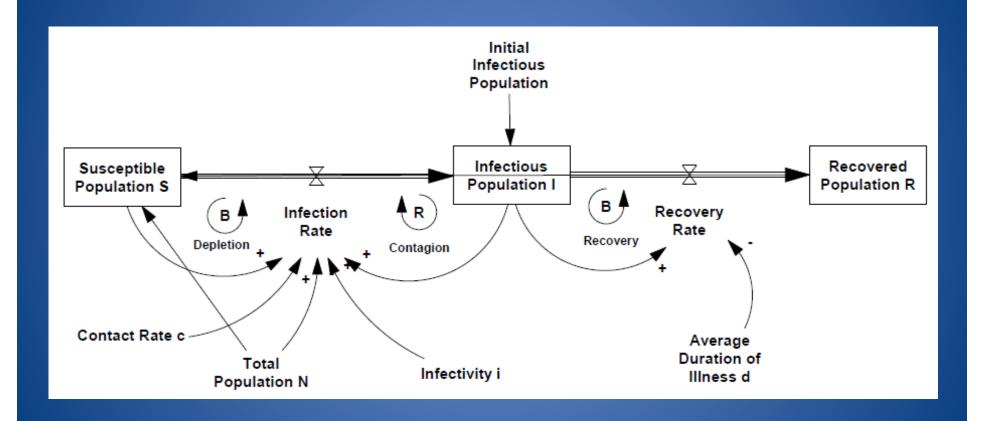
$$\frac{dS}{dt} = -\beta IS$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

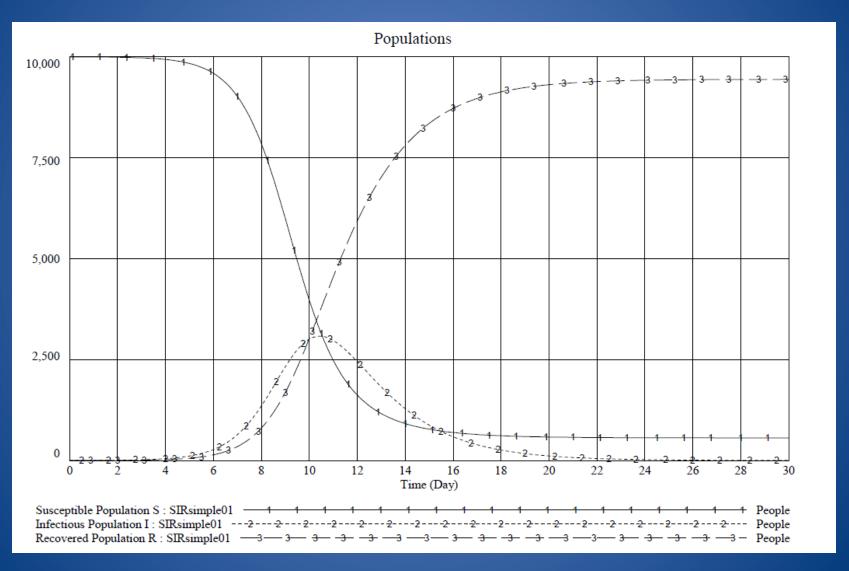
$$\frac{dR}{dt} = \gamma I$$

- S Susceptible population
- I Infectious population
- R Recovered population
- β Transmission rate
- γ Recovery rate

Infectious Disease



Infectious Disease



Simulation

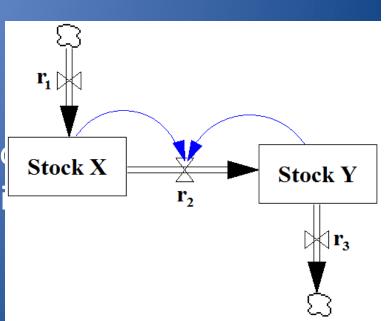
- For most systems of ODEs, analytical solutions do not exist
- Continuous stock (e.g. money in savings): use numerical methods to approximate solution
- Discrete stock (e.g. people): use stochastic simulation methods

Stochastic Simulation of ODEs

- Assumption: Future state of system depends only on present state, independent of history
- → Continuous Time Markov Chain!
 - Time between events Exponentially distributed
 - Event occurrences in $[t, t+\Delta t]$ Poisson distributed

Stochastic Simulation of ODEs

- ODEs as CTMCs
 - Flows are interpreted as transition probabilities per unit time
 - Events:
 - $\{X \rightarrow X+1\} \sim Pois(r_1 \Delta t)$
 - $\{(X,Y) \rightarrow (X-1,Y+1)\} \sim Pois(r_2\Delta t)$
 - $\{Y \rightarrow Y-1\} \sim Pois(r_3 \Delta t)$
 - For Δt small, probability of more per time step is $o(\Delta t^2)$, negligi



Stochastic Simulation of ODEs

Algorithm 1 τ -leap Method while Time < MaxTime do for all event types i do

 $\Delta E_i \leftarrow Poisson(r_i \Delta t)$

end for

Update size of each stock based on which transition events occur.

Randomly select ΔE_i agents uniformly from the appropriate stock and transition according to event E_i .

 $Time \leftarrow Time + \Delta t$

end while

• Strengths:

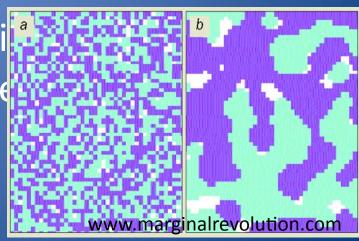
- Easy model construction and validation with available data
- Simulation methods computationally efficient

• Weaknesses:

- Assumes homogenous and well-mixed population
- Captures only average behavior
- Assumes mathematical equations capture all feedback structure in system
- Assumes macro-level behavior is independent of micro-level behavior
- Difficult to model certain interventions (actions by outsiders) that influence flows in the model

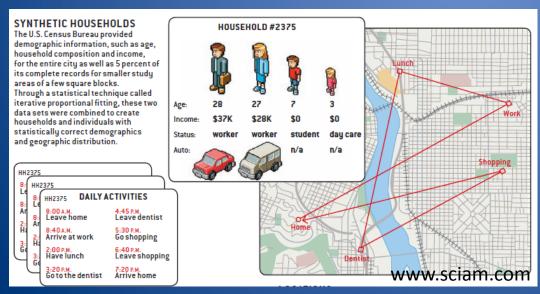
Agent-Based Modeling

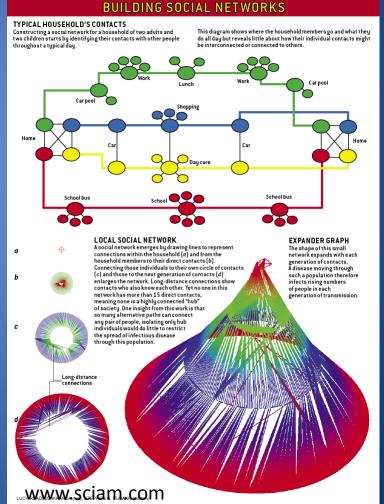
- System modeled as population of heterogeneous agents with evolving state space (e.g. Schelling Segregation Model)
- Agent interactions can cause complex emergent behavior to arise
- Object-oriented programmi representing interacting age



Agent-Based Modeling

- Example: EpiSims
 - Highly detailed
 - Virtual laboratory





Agent-Based Modeling

• Strengths:

- Allows sophisticated interactions between agents with heterogeneous state space (e.g. contact network)
- Yields greater and more intuitive information that can be used by researchers and policymakers
- More "lifelike" than system dynamics models

Weaknesses:

- larger state space means poor computational efficiency
- Model construction is difficult: hard to link observed behavior to local interactions, capture all critical feedback loops
- Model calibration, validation, and sensitivity analysis require large amounts of data and time

Embedded (Hybrid) Models

- A complete agent-based model need not be fitted, but individual-level granularity in the model is maintained and heterogeneity in agents can be exploited
- Allows for simulation of novel, complex intervention strategies at the level of agents that might otherwise be difficult or impossible to express succinctly in system dynamics terminology