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Outline

 Complex Adaptive Systems

* Modeling paradigms
— System Dynamics

* Population Growth
* Epidemiology

— Agent-based Modeling
— Strengths/weaknesses of each

 Embedded (Hybrid) Models




Complex Adaptive Systems

“The whole is not only more than but very
different than the sum of its parts.”

(Anderson, Phil W. 1972. “More is Different.” Science 177: 393-96)

Dynamic network of many agents (e.g. cells, species,
individuals, firms, nations) acting in parallel, constantly
acting and reacting to what the other agents are doing

Control of CAS is dispersed, decentralized

Emergent behaviors (e.g. equilibria, patterns) arise from
competition and cooperation among agents

System behavior is unpredictable and the result of
decisions made every moment by many individual agents




Complex Adaptive Systems
—

 Examples:
— Energy grids
— Ecosystems
— Social diffusion
— Disease dynamics
— Politics
— Supply chain networks
— Etc.
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Modeling CAS

* Two basic approaches:

— Top-down: System Dynamics
* ODEs, Stock and Flow Diagrams

— Bottom-up: Agent-based Modeling

* Cellular Automata, Intelligent Agents s sssinssen




System Dynamics
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System Dynamics

* Flows can be of three types:
— Generative (Fgen)
— Stock-to-Stock (Fin, Fout)
— Destructive (Faes)
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System Dynamics

* Discrete systems:
— Stocks: homogenous groups of well-mixed agents
— Flows: movement of agents between groups
— Feedback Loops: nonlinear interactions and effects




System Dynamics

* Example 1: Population Growth
e P— population size at
timet
e r — growth rate

* K— habitat carrying
capacity

— Exponential growth when population is small
— Exponential decay when population above K




Population Growth
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Population Growth

Population and Carrying Capacity
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Population Growth:
Delayed Maturity

Population and Carrying Capacity
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Population Growth:
Delayed Maturity and Consumption

Population and Carrying Capacity
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System Dynamics

 Example 2: Infectious Disease

e S — Susceptible population
* | — Infectious population
* R — Recovered population

e B — Transmission rate
* vy — Recovery rate




Infectious Disease
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Infectious Disease
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System Dynamics

 Simulation

— For most systems of ODEs, analytical solutions do
not exist

— Continuous stock (e.g. money in savings): use
numerical methods to approximate solution

— Discrete stock (e.g. people): use stochastic
simulation methods




Stochastic Simulation of ODEs

e Assumption: Future state of system depends
only on present state, independent of history
- Continuous Time Markov Chain!

— Time between events Exponentially distributed
— Event occurrences in [t, t+At) Poisson distributed




Stochastic Simulation of ODEs

e ODEs as CTMCs

— Flows are interpreted as transition probabilities
per unit time

— Events:
* {X 2 X+1}~ Pois(r,At)
* {(X)Y) 2 (X-1,Y+1)} ~ Pois(r,At) |
* {Y =2 Y-1} ~ Pois(r;At)

— For At small, probability of m Stoc
per time step is o(At?), neglig r, i




Stochastic Simulation of ODEs

Algorithm liT-leap Methodi

-while Time < MaxTime do
for all event types i do

AFE; «— Poisson(r;At)
.end for

[Update size of each stock based on which transition
-events OCcur.

Randomly select A E; agents(uniformly from the appro-
| priate stock and transition according to event ;.
{Time «— Time + At

-end while




System Dynamics

e Strengths:
— Easy model construction and validation with available data
— Simulation methods computationally efficient

 Weaknesses:
— Assumes homogenous and well-mixed population
— Captures only average behavior

— Assumes mathematical equations capture all feedback
structure in system

— Assumes macro-level behavior is independent of micro-
level behavior

— Difficult to model certain interventions (actions by
outsiders) that influence flows in the model




Agent-Based Modeling

e System modeled as population of
heterogeneous agents with evolving state
space (e.g. Schelling Segregation Model)

* Agent interactions can cause complex
emergent behavior to arise

* Object-oriented ﬁ-‘t:}‘ i




Agent-Based Modeling

BUILDING SOCIAL NETWORKS

TYPICAL HOUSEHOLD'S CONTACTS

Constructing a social network for a household of two adults and This diagram shows where the household members go and what they
two children starts by identifying their contacts with other people do all day but revealslittle about how their individual contacts might
throughout a typical day. beinterconnected or connected to others.

* Example: EpiSims
— Highly detailed
— Virtual laboratory

Carpool

SYNTHETIC HOUSEHOLDS

The U.S. Census Bureau provided
demographic information, such as age,
household composition and income,
for the entire city as well as 5 percent of
its complete records for smaller study
areas of a few square blocks.

Through a statistical technique called
iterative proportional fitting, these two
datasets were combinedto create
households and individuals with
statistically correct demographics
and geographic distribution.
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HOUSEHOLD #2375

RIE

Income:  $37K $28K $0 $0
status:  worker worker swdent daycare
Auto:

DAILY ACTIVITIES

:| HH2375
8:00 AM.
Leave home
8:40AM.
Arrive atwork
2:00P.M.

Have lunch

3:20PM. )
Gotothe dentist

4:45PM.
Leave dentist
5:30 PM.
Goshopping
6:40P.N. .
Leave shopping

7:20P.M
Arrive home

Daycare

School bus sm“m School bus

<%

LOCAL SOCIAL NETWORK

Asocial network emerges by drawing lines to represent

connections within the household (a) and from the

household membersto their direct contacts (b).

Connecting those individuals to theirown circle of contacts

(c) and those to the next generation of contacts (d)

enlarges the network. Long-distance connections show

contacts who also know each other. Yet no one in this

network has more than 15 direct contacts,

meaning none is a highly connected “hub”

of society. One insight from thisworkis that Vg

so many alternative paths can connect [ '“. §
any pair of people, isolating only hub A T 'p/‘\\,‘
individuals would do little to restrict / . e,
the spread of infectious disease 1
through this population.

K
=

Long-distance
connections
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EXPANDER GRAPH
The shape of this small
network expands witheach
generation of contacts.
Adisease moving through
such a population therefore
infects rising numbers

of people in each
generationof transmission.




Agent-Based Modeling

e Strengths:

— Allows sophisticated interactions between agents with
heterogeneous state space (e.g. contact network)

— Yields greater and more intuitive information that can be
used by researchers and policymakers

— More “lifelike” than system dynamics models
 Weaknesses:

— larger state space means poor computational efficiency

— Model construction is difficult: hard to link observed
behavior to local interactions, capture all critical feedback
loops

— Model calibration, validation, and sensitivity analysis
require large amounts of data and time




Embedded (Hybrid) Models

* A complete agent-based model need not be
fitted, but individual-level granularity in the
model is maintained and heterogeneity in
agents can be exploited

Allows for simulation of novel, complex
intervention strategies at the level of agents
that might otherwise be difficult or impossible
to express succinctly in system dynamics
terminology




