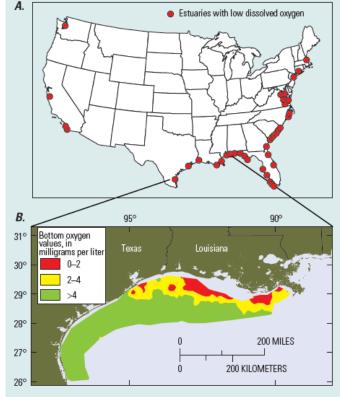


Computational Approach to a Major Sustainability Issue: Nitrogen Management for Corn

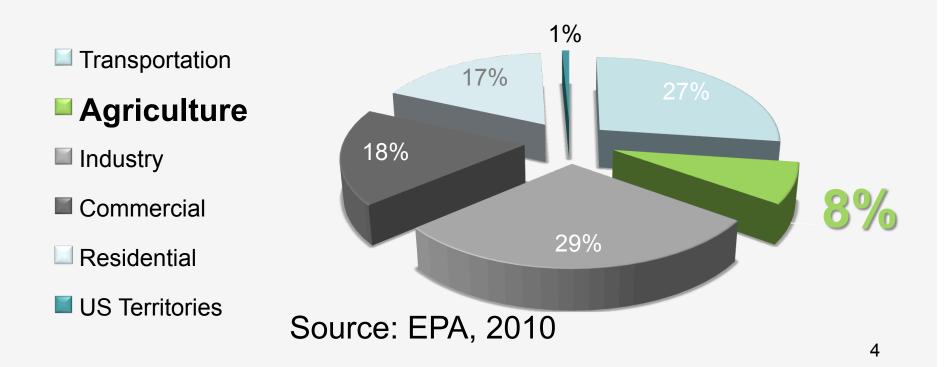
Harold van Es Jeff Melkonian Bianca Moebius-Clune

Cornell University College of Agriculture and Life Sciences Department of Crop and Soil Sciences

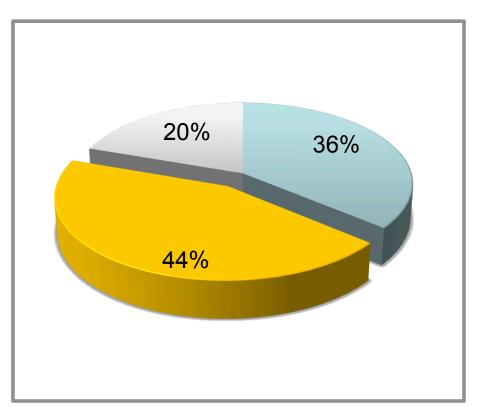
Outline for Today


- Background:
 - -Sustainability concerns with agricultural nitrogen
 - -Processes affecting N in soil-crop system
- Computational Approach:
 - -Adapt-N Tool: Background Information
 - -Adapt-N Tool: Examples and using it effectively

Cornell University College of Agriculture and Life Sciences Department of Crop and Soil Sciences

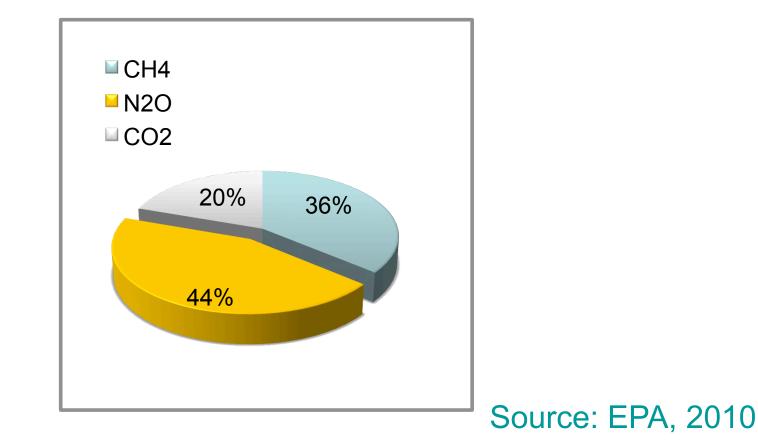

Corn Nitrogen Concerns

- ~ \$5 billion/yr of N fertilizer applied to corn
- Largest energy input in cropping system
- N use efficiency very low (30-40%)
- Greenhouse gases (esp. N₂O)
- Sensitivity to climate change
- High groundwater nitrate levels
- Hypoxia/anoxia in estuaries



Total Green House Gas Emissions in the US by Economic Sector (2008)

Agriculture accounts for 1.2% of US GDP \rightarrow emits disproportionate levels of GHGs

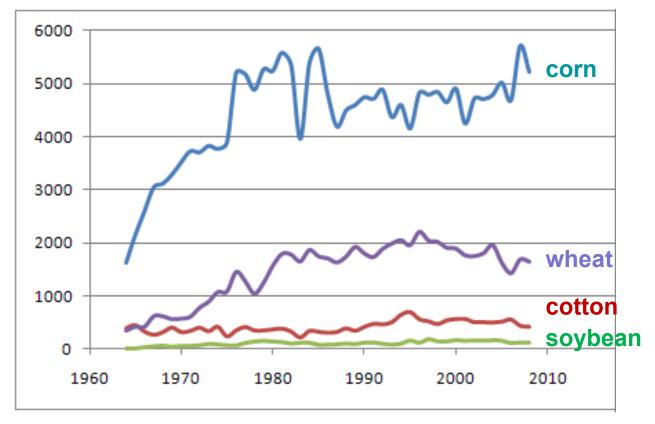


⁵ Global Warming Contributions of Agricultural Emissions from Three Greenhouse Gases Source: EPA, 2010

- Which are the three gases?
- Which of the three greenhouse gases contributes most to global warming potential?
- Which the least?

Agricultural GHG Emissions (2008)

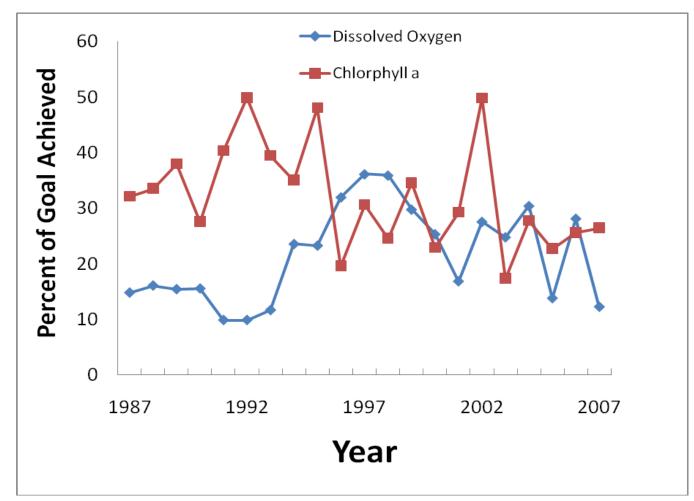
N application to agricultural lands in 2008 accounted for:


- 92% of Agricultural N₂O losses
- Greater global warming potential than all of US Aviation
- 1.5 time greater global warming potential than Enteric Fermentation

To Put It Into Perspective with Rounded Numbers....

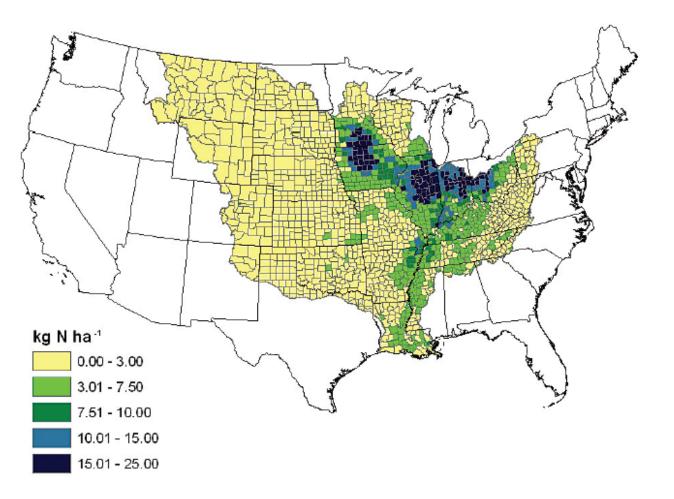
- Average annual N₂O losses of 7.5 lbs per acre from corn lands is equivalent to
 - combustion of 126 gallons of gasoline
 - 3,700 miles of driving an average passenger car
- Assuming a farm with 500 ac of corn, the <u>annual</u> global warming impact is equivalent to about 1.8 million miles of driving (70 times around earth).

U.S. N Fertilizer Use by Crop (1,000 tons)


Source: USDA-ERS

Are levels of nutrients in water increasing or decreasing?

From: Dubrovsky et al., 2010, based on NAWQA data


"Despite major Federal, State and local efforts and expenditures to control sources and movement of nutrients within our Nation's watersheds, national-scale progress was not evident in this assessment, which is based on thousands of measurements and hundreds of studies across the country from the 1990's and early 2000's,"

Limited Success with Chesapeake Bay

Chesapeake Bay health assessment (% of goal achieved) for dissolved oxygen and chlorophyll a for the period 1987 to 2007 (data source: USEPA Chesapeake Bay Program)

Riverine N Yield in the MRB

David et al. J. Environ. Qual. 39:1657–1667 (2010)

Prediction of Watershed N Yield

Modeled nitrate N yield (January to June) was best explained by (R²=0.82):

- river flow x fertilizer N input
- fraction tile drained
- N consumed by humans

76% of variability explained17% explained7% explained

But..... drainage reduces nitrous oxide losses!

David et al. J. Environ. Qual. 39:1657–1667 (2010)

Control Points for Reducing N Losses

- 1. Input management (tangible and transparent)
- 2. Transport mechanism (drainage, irrigation)
- 3. Remedial actions (filters, buffers, wetlands)

Precise Estimation of Maize N Fertilizer Needs is Important

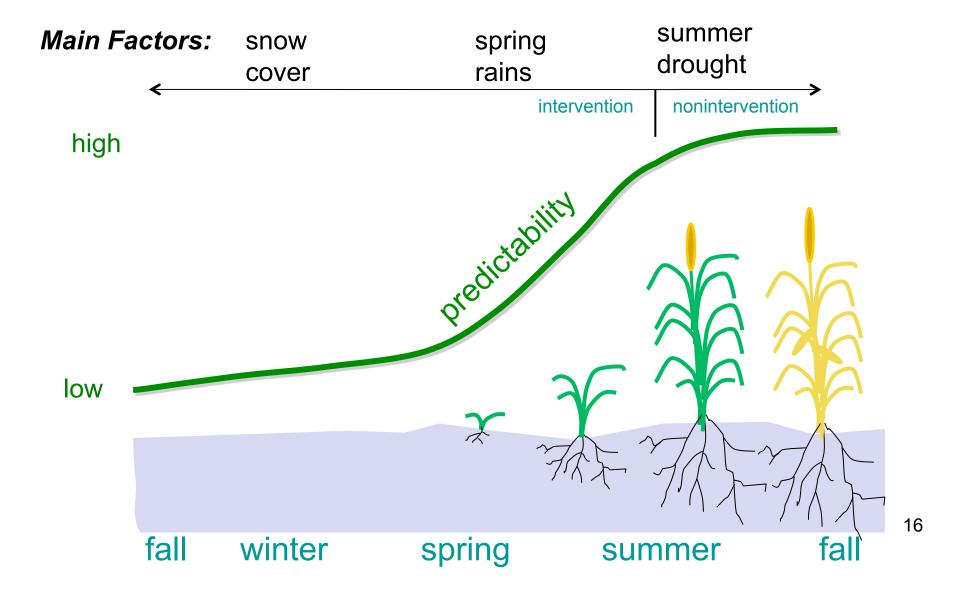
NITROUS OXIDE

**Large losses once crop

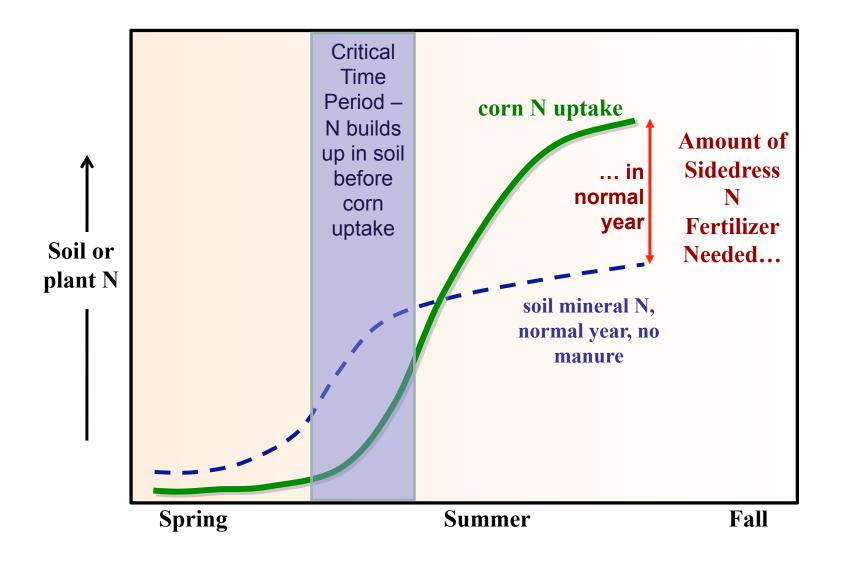
demand is satisfied**

4.0 3.5 N₂O-N emission, kg ha⁻¹ 3.0 NITRATE LEACHING 2.5 40 **NO3-N LEACHING LOSSES (kg ha-1)** 2 01 21 05 25 20 2 01 21 02 22 2.0 1.5 1.0 Sand 1993 0 5 Sand 1994 0.0 Clay 1993 50 100 150 250 200 300 0 Clay 1994 N application rate, kg ha-1 From: Snyder et al., 2009, based on data by Bouwman et al., 2002 0 0 50 100 150 FERTILIZER N RATE (kg ha-1)

van Es et al., 2002

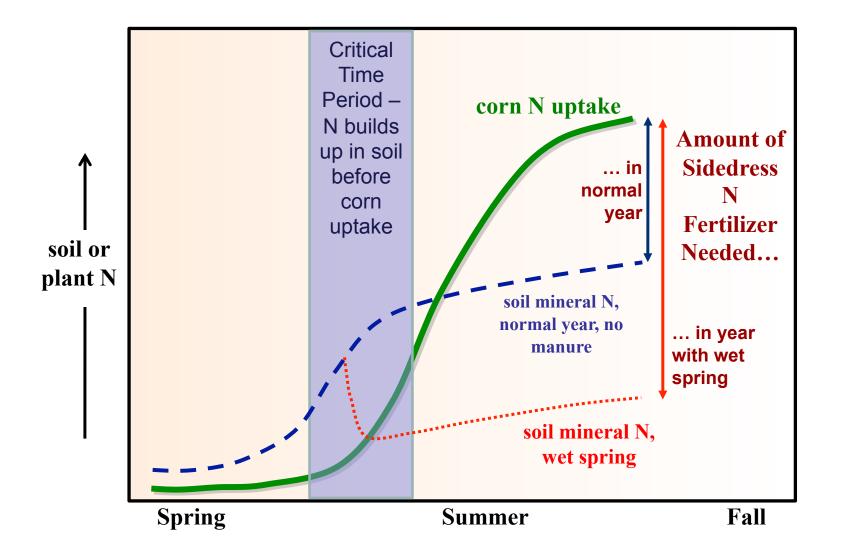

Many sources of variation in N availability

 \rightarrow generalized recommendations less applicable for corn N needs

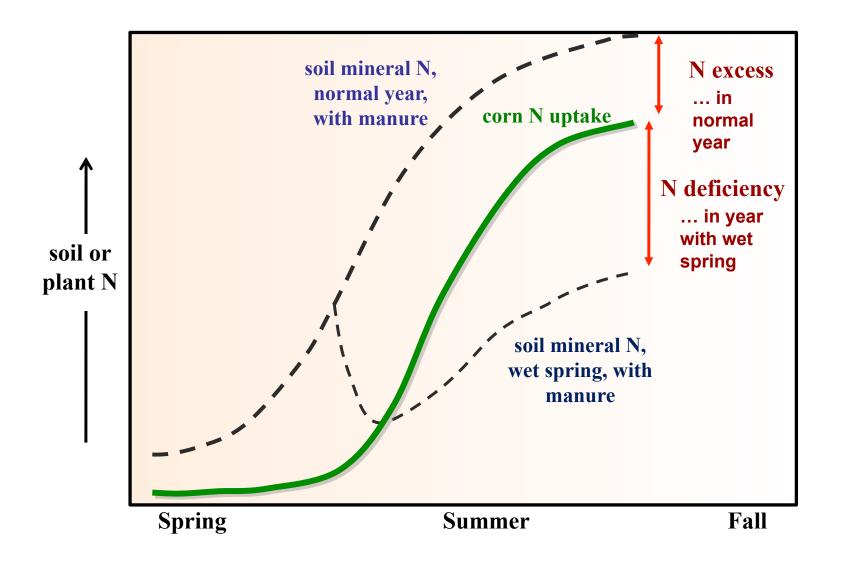

Sources of Variability:

- Organic amendments (manure, compost, etc.)
- Crop rotations
- Soil type differences
- Soil organic matter contents (management-induced soil change)
- Early season weather (warm vs. cool; wet vs. dry)
- Late season weather (warm vs. cool; wet vs. dry)

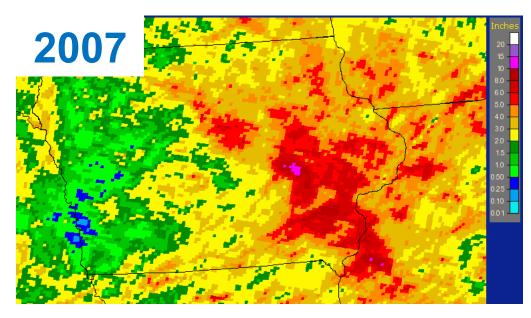
Predicting N Needs for Corn: Precision for Different Times of Application

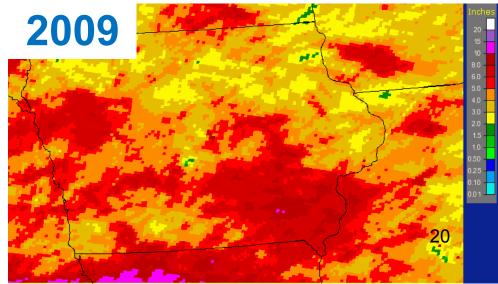


SOM mineralization occurs ahead of corn N uptake.....



17

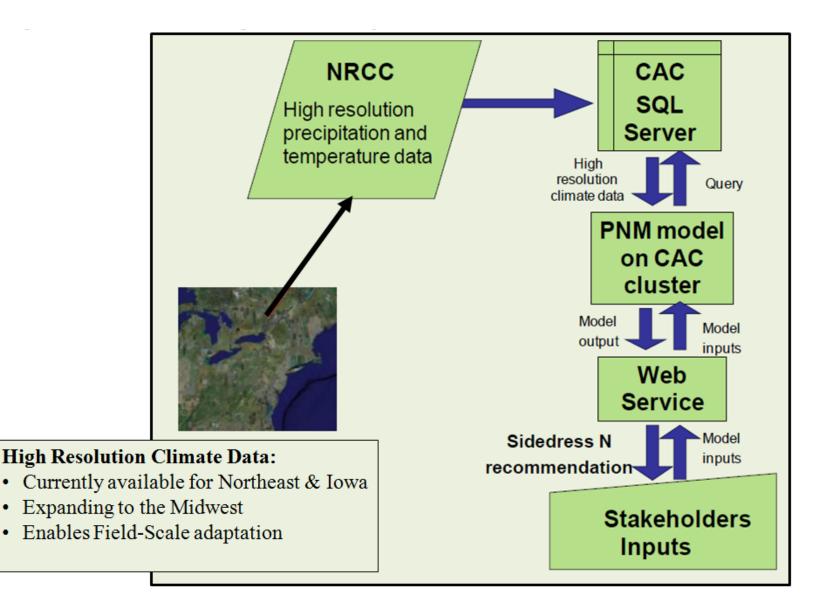

Need for supplemental N fertilizer depends on early season weather ...

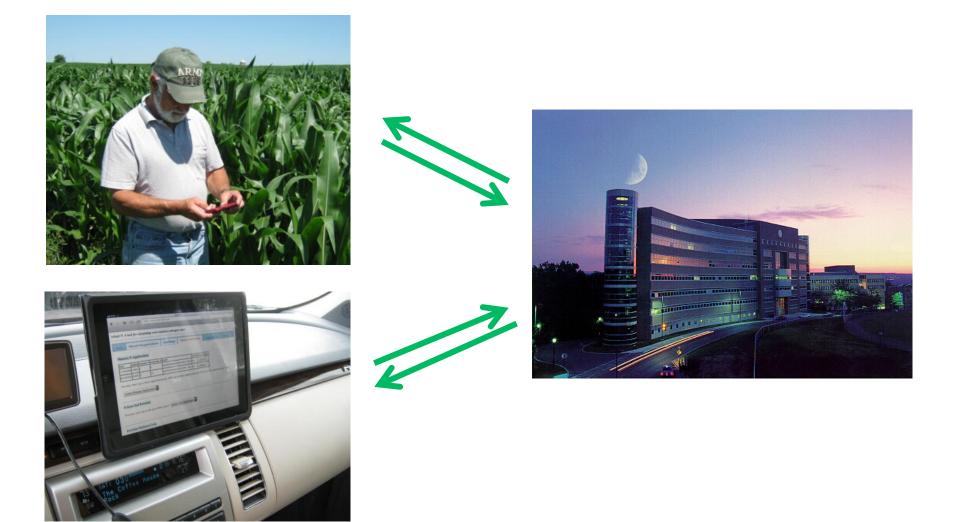

Manure Scenario: Soil N mineralizes from SOM and Manure

Precipitation is highly localized....

June Precipitation Iowa

Addressing the Problem with Computational Tools


Why Use Models for N Management?


Photo: Miller-St. Nazianz, Inc.

- Universal process-based approach
 - Incorporates greater system complexity
- Allows for Adaptive Management
 - variable soils (genetic and dynamic)
 - variable management (planting date, organic additions, population, fertility management, etc)
 - variable weather (Hi-Res Climate Data)
- Low cost
- In-season and post-season evaluations possible
 - Sidedress N recommendations
 - End-of-season retrospective evaluations

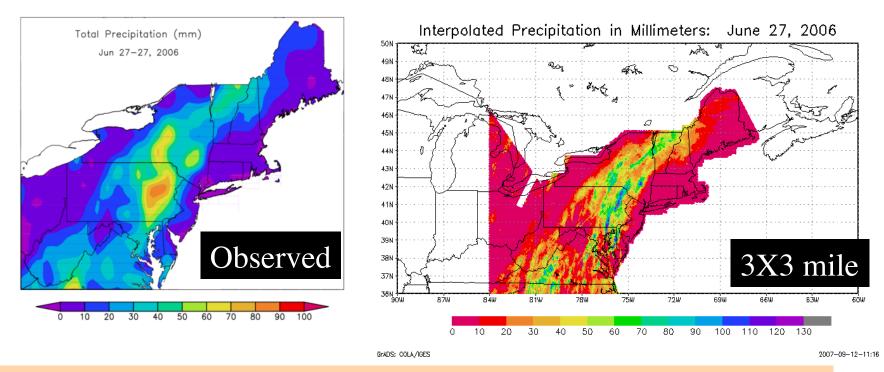
Adapt-N Infrastructure

Adapt-N's Cloud Computing Model: Access with Smartphones and Tablets

PNM model: The core of the *Adapt-N* tool

New model based on the linkage of two simulation models:

• Soil processes model, LEACHN


Hutson, J.L., R.J. Wagenet, and M.E. Niederhofer. 2003. Leaching Estimation And Chemistry Model: a process-based model of water and solute movement, transformations, plant uptake, and chemical reactions in the unsaturated zone. Version 4. Dept of Crop and Soil Sciences. Research Series No. R03-1. Cornell University, Ithaca, NY, USA.

Crop growth/N uptake model

Sinclair, T.R., and R.C. Muchow. 1995. Effect of nitrogen supply on maize yield: I. modeling physiological responses. Agronomy Journal 87:632-641.

Adapt-N Input:

High Resolution Precipitation Data Error-Corrected Radar Estimates Northeast Regional Climate Center

DeGaetano, A.T. & Wilks, D.S. (2008) Radar-guided interpolation of climatological precipitation data. International Journal of Climatology (online)

Adapt-N Interface: User Inputs

Soil, Tillage

- User ID / Field ID
- Latitude / Longitude
- Soil textural group
- Approximate field slope
- Drainage
- Soil organic matter content
- Rooting depth
- Tillage information

Fertilizer, Crop

- Starter fertilizer
 type/rate/application date
- Additional fertilizer
- Cultivar maturity class
- Planting date
- Expected harvest population
- Expected Yield

Organic Inputs

- Manure applications: Two previous years/current year
- Previous sod crop
- 1st year corn after soybean?

Ada	apt	University -N ptive nitrogen mana Adapt-N Manual	agement in corn. News & Events	Sea		go pt-N ● Cornell
Web-based ni management dec Adapt Sign i Get account Vie	trogen isision tool -N in w manual	 Adjust N applications bafarm Cut fertilizer rates, costs Fine-tune sidedress N r Determine if manured fi Determine if you need r After the growing seaso Explore this learning too Adapt-N is mobile enablierad, Tablet Adapt-N is an <u>online tool</u> thyour N inputs for grain, silation Adapt-N is an <u>online tool</u> thyour N inputs for grain, silation Con this site: <u>About</u> - Why Adaptive N relates to climate change <u>Adapt-N manual</u> - How tworks. <u>News and events</u> - Visitit to an event near you. 	ased on spring weather s and losses, but maint rates elds need more N rescue N after heavy sp on – is there excess N? of "What if I had?" led – use on your smar nat will help you precise age or sweet corn. It us odel developed over th on climate data availabl I Management is import ge. to use the Adapt-N tool our blog, find out the la	r on your ain yields pring rain tphone, ty manage es a he last le for your tant, how it and how it atest, come	News from the blog Adapt-N in American Adapt-N was feature article in the A Soil workshop Marc Mark your calendar: Workshop: Adapti Adapt-N is mobile en Did you know you ca account from your RSS Widget for Websit	n Agriculturist d in a Jan. 26 :h 23 Cornell Soils nabled! n access your

Adapt-N Interface Set-up

Adapt-N A a	tool for calculating corn .	sidedress nitro	gen rates					
Login	Mineral Nitrogen/Cultivar	Soil/Tillage	Manure/Sod/Soybean	Add Application	Results	Manage Locations		
Region	Iowa 💌							
Nitrogen	ı Fertilizer Applications f	for this Growi	ng Season					
Please sel	lect the choice that describes	your 'fertilizat	ion application		r			
applied	starter (fertilizer banded with	1 seed)	~			Mineral	N	
Solution	n N (UAN) 💽 (lbs	N/acre) 30	2"-4"		~	informat		
						mormat		
Crop Inf	ormation							
Grains: 1								
Planting D	Date 05/01/2010	32,500 plar	its/acre	•		Cultiva	or	
	tivars (bu/acre)	✓ 190		-				
Siumodi						informat	ION	
	When you've entered	all your inform	ation, please click the sub	mit button Submit	When Comple	ete		K
Growing	Season 2010 💌 Season Er	nd Date 06/15/20	10	Defit	ne a New Fiel	ld Log Off	Chang	e Field Menu 🛛 💌

Soil and Tillage Information

Adapt-N∠	A tool for calculating corn .	sidedress nitro	gen rates			
Login	Mineral Nitrogen/Cultivar	Soil/Tillage	Manure/Sod/Soybean	Add Application	Results	Manage Locations
	formation select a soil texture class (New	York) or soil se	ries (Iowa) that best descr	ibes the soil in the fi	eld.	
Please s	elect the estimated rooting de select the approximate slope (S re a soil test? There was a soi	%) of the field. 1	ess than 3%		Inf	Soil formation
Otherwi	now the sample depth, please e ise, please enter 6 inches. (inc anic matter: (%) 3.5					
0	System Information select the tillage system for thi	s field. no tillag	e (no till, zone till, strip til	l, ridge till) 🔽		Tillage System
	When you've entered	all your inform	ation, please click the sub	mit button Submit V	When Comple	ete
Growin	ng Season 2010 💌 Season Et	nd Date 06/15/20	010	Defin	ie a New Fiel	ld Log Off

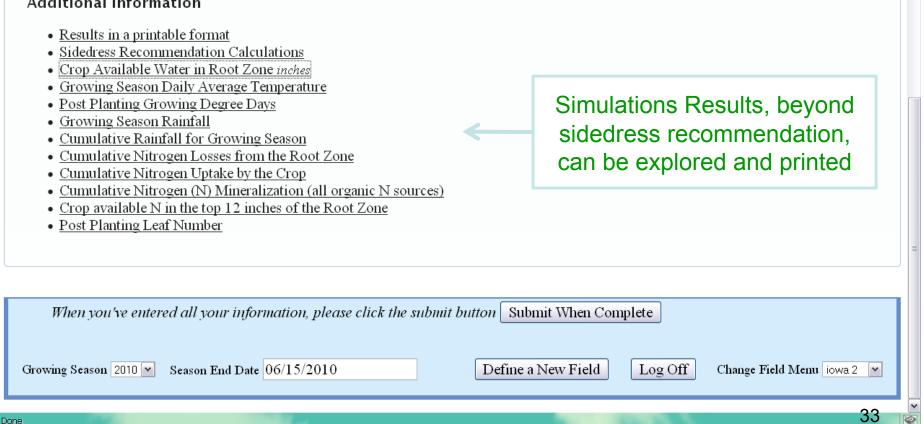
30

Manure and Rotation Information

up to 3 applications for current and each of two previous years

Login	Minera	al Nitrogen	/Cultivar	Soil/Tillage	Manure/Sod/S	Soybean	Add Applicati	on R	esults	Manage Locations	
Manure	N App	lications									
Date	Added	Organic N	Ammonia N	Depth	S	olids Delet	e Button				
04/24/2010	5000	10	8	injected/incorpora	ated within 1 day 4	Del	ete			Manu	re
Vouman	antarıır	to three c	unnlications	for 2008 up to	o three applicati	ove for 7	00 and one app	lication f	5r 2010	Informa	tior
104 may (етиет ц	lo mee a	ipprications 	joi 2008, up 10	о тпее аррисан	0115 JUT 20	ю запа опе арр	nicationj	01 2010	morma	
Select 1	Manure 2	Applicatior	1 💌								
											_
N from S	Sod Ra	tation									
		otation									
Provious			et three yes	ra ² and not on	nlind					Previou	sly
Previous			ist three yea	rs? sod not ap	plied 💌						
Previous			ist three yea	rs? sod not ap	plied 💌					Previou Sod?	
	sod croj	p in the pa		rs? sod not ap	plied 💌						
	sod croj			rs? sod not ap	plied 💌						
Previou	sod croj s Soybo	p in the pa			plied 💌 beans last year 🔨	•				Sod?	
Previou	sod croj s Soybo	p in the po ean Crop				٢				Sod? Previous	sly
Previou	sod croj s Soybo	p in the po ean Crop				•				Sod?	sly
Previou	sod croj s Soybe r com ą	p in the pa can Crop fter soybed	<i>an?</i> no, d	id not plant soy	beans last year 🕥	_	mit hutton Sub	mit When	Complet	Sod? Previous Soybear	sly
Previou	sod croj s Soybe r com ą	p in the pa can Crop fter soybed	<i>an?</i> no, d	id not plant soy		_	mit button Sub	mit When	1 Complet	Sod? Previous Soybear	, sly
Previou	sod croj s Soybe r com ą	p in the pa can Crop fter soybed	<i>an?</i> no, d	id not plant soy	beans last year 🕥	_	mit button Sub	omit When	1 Complet	Sod? Previous Soybear	sly

Adapt-N Output


Date: 02/20/2011 simulated 06/15/2010		Latitude: 40.88	Longitude: -9	4.28
Soil/Field Information				
Soil Texture: Iowa Soil Series: clarion		Field Slope: less than 3%		Summary of
Soil Management: no tillage (no till, zone ti ridge till)	ill, strip till,	Preplant Soil Test: test in 2010		User Inputs
Crop Information				
Maturity Class: 108_d_crm			Planting Dens	ity 32,500
GDD to maturity: 2680		Planting Date: 05/01/2010	plants/acre	
Expected Yield: 200 bu/acre				
Nitrogen Inputs:				
Nitrogen Inputs: Organic Sources				
Organic Sources		Manure Input	Manure Mana	agement
Organic Sources Sod: sod not applied		Manure Input 5000.0 gals/acre manure added		ngement
Organic Sources Sod: sod not applied Manure		-	 injected/inco	rporated within 1
Organic Sources Sod: sod not applied		5000.0 gals/acre manure added		
Organic Sources Sod: sod not applied Manure		5000.0 gals/acre manure added 10.0 lbs Organic N/1000 gals 8.0 lbs Ammonium N/1000 gals	 injected/inco	rporated within 1
Organic Sources Sod: sod not applied Manure 04/24/2010		5000.0 gals/acre manure added 10.0 lbs Organic N/1000 gals 8.0 lbs Ammonium N/1000 gals manure	injected/inco day	rporated within 1

Adapt-N Output: Simulation Results

Sidedress Nitrogen Recommendation: 55 Ibs N/Acre

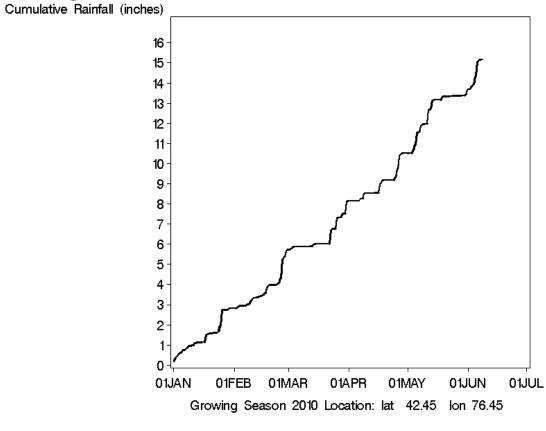
This recommendation is based on an "Expected Yield" entry that is assumed to be the economically optimal yield for your field. As such, it is relatively insensitive to profit within a range of $\pm/-15$ lbs per acre around the recommended rate at current fertilizer and grain prices.

Additional Information

Supporting Data

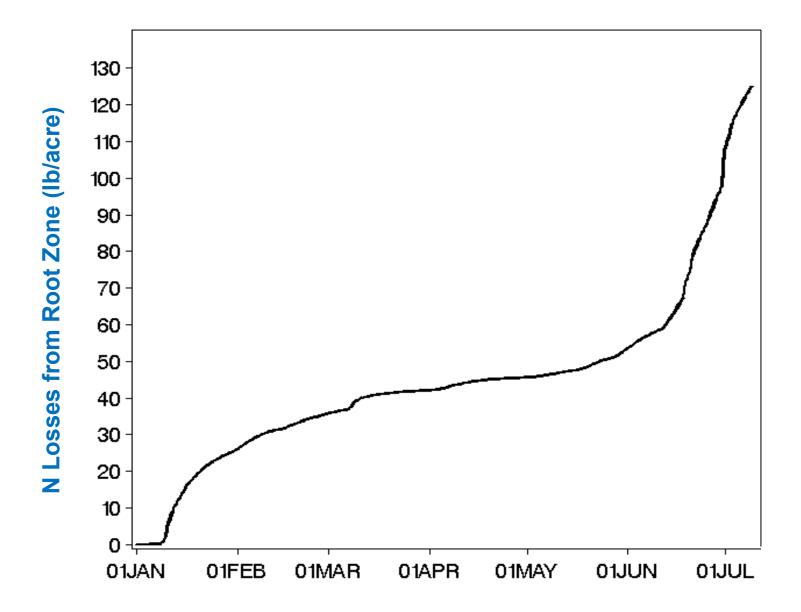
Sidedress N rate estimated by AdaptN

CropN_{Harvest} - CropN_{Current} - SoilN_{Current} - SoilN_{postsidedress} - SoybeanN_{Credit}


Sidedress N rate: 55 lbs N/Acre CropN_{Harvest}: 193 (*lbs N/acre*) CropN_{Current}: 21 (*lbs N/acre*) SoilN_{Current}: 80 (*lbs N/acre*) SoilN_{postsidedress}: 38 (*lbs N/acre*) SoybeanN_{Credit}: 0 (*lbs N/acre*)

Root Zone Crop Available Water

Note that these estimates are for non-irrigated corn production. Current root zone crop available water: 6 inches Crop available water at field capacity: 6 inches


Cumulative Rainfall

Growing Season Cumulative Rainfall

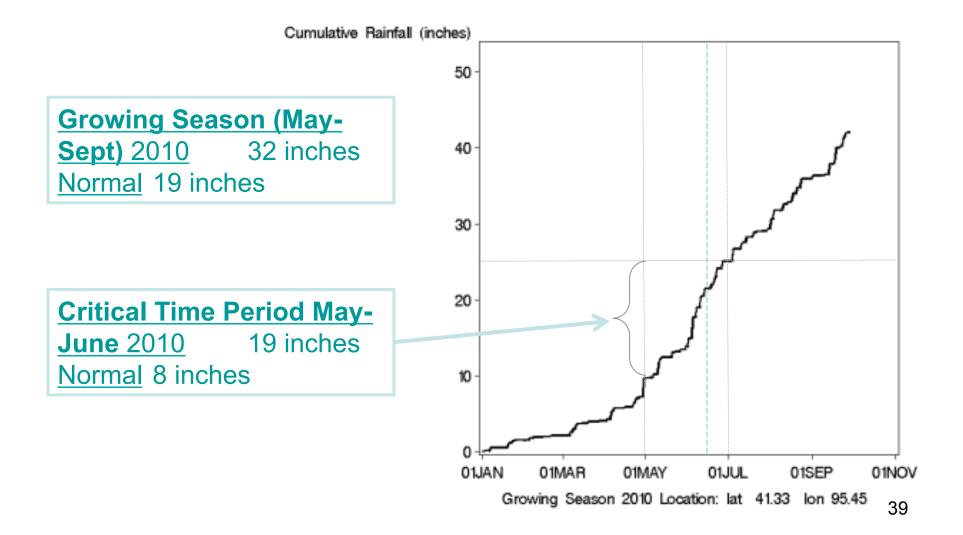
Cumulative N Losses From the Root Zone

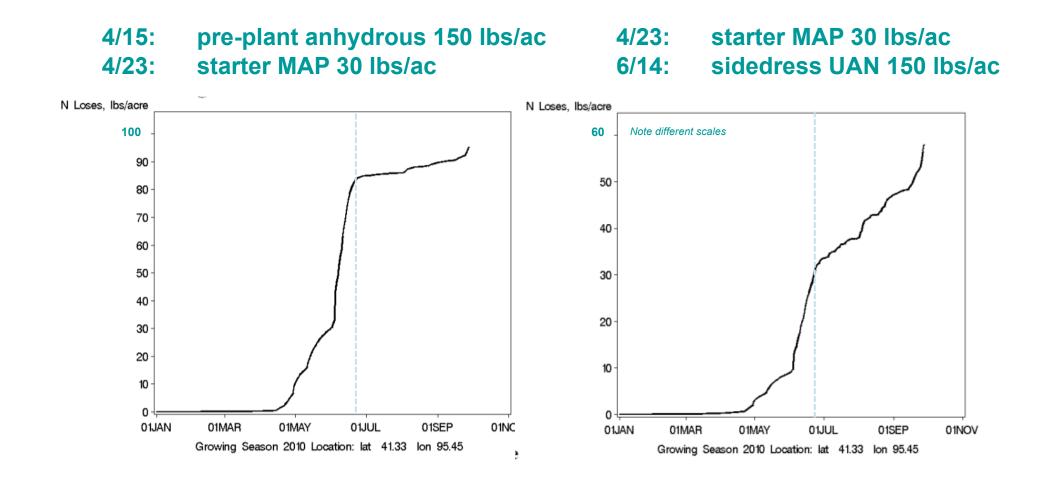
36

Adapt-N Applications

Adapt-N can be used for a wide range of N management practices for corn (grain, silage, sweet):

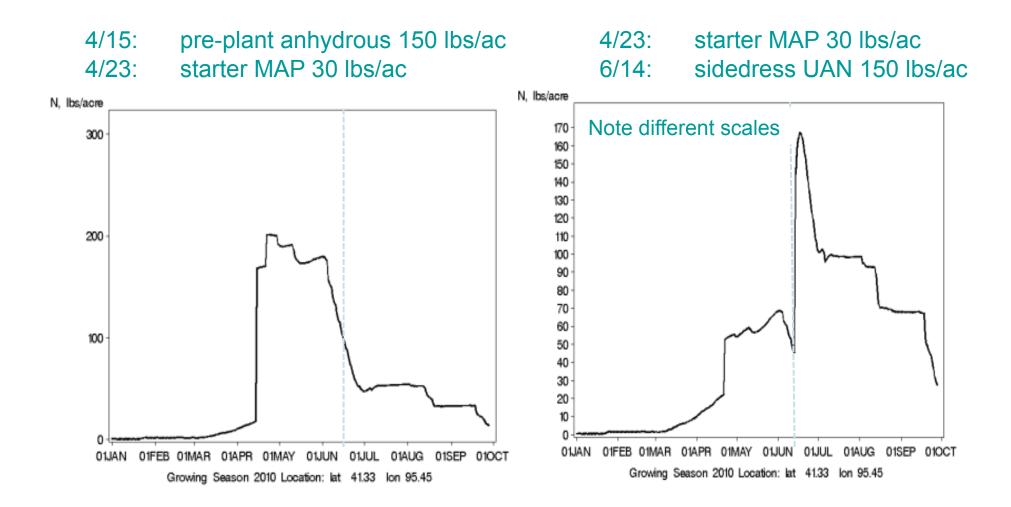
- Sidedress N rate recommendation
- Rescue N application rate
- Manured fields Is additional N necessary, and how much?
- Pre-plant applications or applications at planting: Are additional in-season N applications necessary?
- Hindcasting after growing season (excess?; when deficient; what-if?)


End of Season Evaluations with Adapt-N

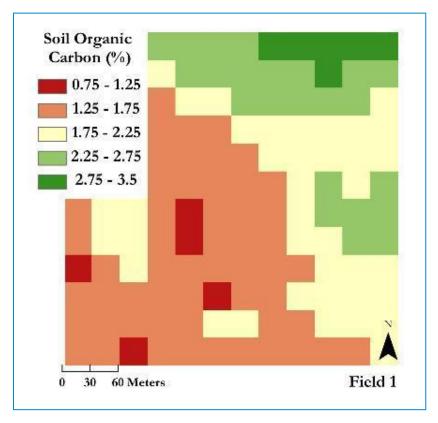


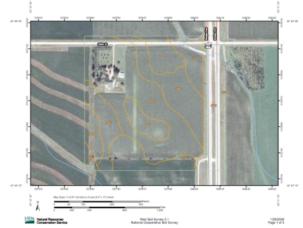
Cornell University College of Agriculture and Life Sciences Department of Crop and Soil Sciences

Western Iowa 2010 Growing Season Cumulative Rainfall



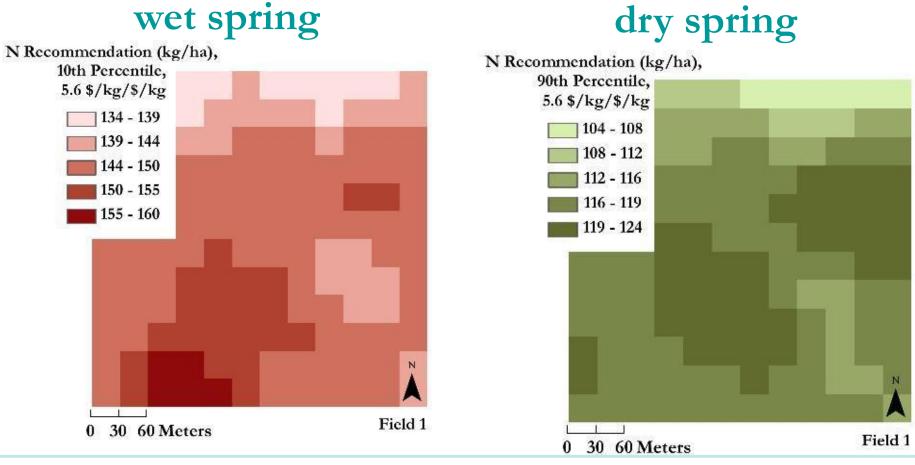
Western Iowa 2010 Cumulative N losses




40

Western Iowa 2010 Soil Nitrate in 0-12 in

Using Adapt-N for Site-Specific Adaptive Management


NRCS Soil survey

Organic Carbon Content (%) estimated with VIS-NIR Spectroscopy (Veris Technologies)

N Sidedress Recommendation (kg/ha)

0.1 Fertilizer to Grain Price Ratio

Graham, C.J., H.M. van Es, J. Melkonian, and D.A. Laird. 2010. Improved nitrogen and energy use efficiency using NIR estimated soil organic carbon and N simulation modeling. In: D.A. Clay and J. Shanahan. GIS Applications in Agriculture – Nutrient Management for Improved Energy Efficiency. pp 301-325, Taylor and Francis, LLC.

Conclusions

- The need for more precise nitrogen input management is becoming increasingly compelling
- Computational tools can facilitate adaptive N management by incorporating localized information and complex system dynamics, including weather effects
- The Adapt-N tool allows for adaptation to climate change, reduced energy use and environmental losses, and increased profitability

Notes on Adapt-N

- Web site http://adapt-N.eas.cornell.edu
- (soon: ADAPT-N.org)
- To register, email Jeff Melkonian jjm11@cornell.edu. Provide preferred UserID and password
- Operational for Northeast US and Iowa
- Planned expansion to other humid regions in US, with initial focus on corn belt states