Recap: Geometry of image formation

The pinhole camera

Let's get into the math

Putting everything together

- Change coordinate system so that center of the coordinate system is at pinhole and Z axis is along viewing direction

$$
\mathbf{x}_{w}^{\prime}=R \mathbf{x}_{w}+\mathbf{t}
$$

- Perspective projection

$$
\begin{aligned}
\mathbf{x}_{w}^{\prime} & \equiv(X, Y, Z) & x & =\frac{X}{Z} \\
\mathbf{x}_{i m g}^{\prime} & \equiv(x, y) & y & =\frac{Y}{Z}
\end{aligned}
$$

Can projection be represented as a matrix multiplication?

Matrix multiplication $\left[\begin{array}{lll}a & b & c \\ p & q & r\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{l}a X+b Y+c Z \\ p X+q Y+r Z\end{array}\right]$

Perspective

 projection$$
\begin{aligned}
x & =\frac{X}{Z} \\
y & =\frac{Y}{Z}
\end{aligned}
$$

Projective space and homogenous coordinates

- Mapping \mathbb{R}^{2} to \mathbb{P}^{2} (Cartesian to homogenous coordinates):

$$
(x, y) \rightarrow(x, y, 1)
$$

- Mapping \mathbb{P}^{2} to \mathbb{R}^{2} (homogenous to cartesian):

$$
(x, y, z) \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right)
$$

- A change of coordinates

Homogenous coordinates

- In standard Euclidean coordinates
- 2D points : (x, y)
- 3D points : (x, y, z)
- In homogenous coordinates
- 2D points: $(x, y, 1)$
- 3D points : $(x, y, z, 1)$

Why homogenous coordinates?

$$
\begin{array}{cc}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]} \\
\begin{array}{c}
\text { Homogenous } \\
\text { coordinates of } \\
\text { world point }
\end{array} & \begin{array}{c}
\text { Homogenous } \\
\text { coordinates of } \\
\text { image point }
\end{array} \\
\hline
\end{array}
$$

Homogenous coordinates

$\left[\begin{array}{llll}a & b & c & t_{x} \\ d & e & f & t_{y} \\ g & h & i & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\left[\begin{array}{c}a X+b Y+c Z+t_{x} \\ d X+e Y+f Z+t_{y} \\ g X+h Y+i Z+t_{z} \\ 1\end{array}\right]$

$$
\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\left[\begin{array}{c}
M \mathbf{x}_{w}+\mathbf{t} \\
1
\end{array}\right]
$$

Perspective projection in homogenous coordinates

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

Matrix transformations in 2D

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

$K=\underset{\text { Translation }}{\left[\begin{array}{ccc}1 & 0 & t_{u} \\ 0 & 1 & t_{v} \\ 0 & 0 & 1\end{array}\right]}$

$K=\left[\begin{array}{ccc}s_{x} & \alpha & t_{u} \\ 0 & s_{y} & t_{v} \\ 0 & 0 & 1\end{array}\right] \quad$ to "pixels")
Added skew if image x and y axes are not perpendicular

Final perspective projection

Final perspective projection

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} \equiv & K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \\
& \text { Cemera parameters }
\end{aligned}
$$

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

Image Formation - Color

The pinhole camera

We know where a pixel comes
from.
But what is its color?

The pinhole camera

We know where a pixel comes from.
But what is its color?

- A pixel is some kind of sensor that measures incident energy
- But what exactly does it measure?

Sensing light

- Consider a sensor placed in a single beam of light.
- How much energy/time does it get?
- Not enough information

Factor 1: Area

- Larger sensors capture more power
- Power = LA?
- L: measure of beam brightness (radiance)
- Radiance is power per unit area?

Factor 2: Orientation

- Slanted sensors receive less light
- Power = LA $\cos \theta$
- L = Radiance = Power per unit projected area

Multiple beams

- Power must be sum of power from each beam
- Power $=L_{1} A \cos \theta_{1}+L_{2} A \cos \theta_{2}$
- θ_{1} and θ_{2} are dependent on beam direction
- Similarly L_{1} and L_{2}
- General case: Light comes from all directions
- Must integrate infinitesimal contributions from all directions

A hemisphere of directions

- In 2D, direction = angle
- Infinitesimal set of directions = infinitesimal angle
- Integrate over all directions = integrate over angle
-3D?

A hemisphere of directions

- In 3D direction = solid angle
- Definition:
- 2D: angle = arc length / radius
- 3D: solid angle = area $/$ radius 2
- $\Omega=\frac{A}{r^{2}}$

Multiple beams

- Integrate incident energy from all directions
- Power $=\int L(\Omega) A \cos \theta(\Omega) d \Omega$
- Radiance = L = Power in a particular direction per unit projected area per unit solid angle

Integrating over area

- What if sensor is not flat?
- Orientation depends on location
- What if parts of the sensor receive less light?
- L depends on location
- Divide sensor into infinitesimal elements and integrate
- Power $=\iint L(x, \Omega) \cos \theta(x, \Omega) d A d \Omega$

Radiance

- Power $=\iint L(x, \Omega) \cos \theta(x, \Omega) d A d \Omega$
- $L(x, \Omega)$ is the Radiance
- Power at point x
- in direction Ω
- per unit projected area
- per unit solid angle

What do pixels measure?

- A pixel measures total power incident on it
- Power $=\iint L(x, \Omega) \cos \theta(x, \Omega) d A d \Omega$
- But only a very narrow range of directions!

What do pixels measure?

- A pixel measures total power incident on it
- Power = LA $\cos \theta$?
- Close to the center, Power proportional to L

Radiance

- Pixels measure radiance

Where do the rays come from?

- Rays from the
light source
"reflect" off a
surface and reach camera
- Reflection:

Surface absorbs light energy and radiates it back

Light rays interacting with a surface

- I : Incoming light direction (only one direction)
- O : Outgoing light direction (viewing direction)
- \mathbf{N} : Surface normal
- L_{i} : Incoming light radiance
- L_{o} : Outgoing light radiance

Light rays interacting with a surface

- Consider a surface patch of unit area
- How much power does it receive?
- $E_{i}=L_{i} \cos \theta_{i}$
- Some fraction of this will be emitted
- Fraction might depend on I, O

$$
\begin{aligned}
& L_{o}=\rho(I, O) E_{i} \\
= & \rho(I, O) L_{i} \cos \theta_{i}
\end{aligned}
$$

Light rays interacting with a

 surfaceIncoming energy (Irradiance)

$$
L_{o}=\rho(I, O) L_{i} \cos \theta_{i}
$$

BRDF: Bidirectional reflectance distribution function

Note does not capture phenomena like sub-surface scattering

Light rays interacting with a surface

$$
L_{o}=\rho(I, O) L_{i} \cos \theta_{i}
$$

- Special case 1: Specular surfaces
- All light reflected in a single direction
- $\rho(I, O)=0$ unless $\theta_{i}=\theta_{r}$

Light rays interacting with a surface

$$
L_{o}=\rho(I, O) L_{i} \cos \theta_{i}
$$

- Special case 2: Matte surfaces
- Light reflected equally in all directions
- $\rho(I, O)=\rho$ (constant)
- ρ is albedo : amount of paint
- These are also called Lambertian surfaces

Lambertian surface

- $L_{o}=\rho L_{i} \cos \theta_{i}$
- Outgoing radiance does not depend on viewing direction
- Given same light, pixel looks the same from all views
- Frequent assumption in computer vision

Intrinsic image decomposition

- Consider a lambertian scene lit with directional light
- Image pixel (x, y) corresponds to point in scene with
- albedo $\rho(x, y)$
- surface normal making angle $\theta_{i}(x, y)$ with light direction
- Pixel color:

$$
I(x, y)=\rho(x, y) L_{i} \cos \theta_{i}(x, y)
$$

Image
"Reflectance" image
"Shading" Image

Intrinsic image decomposition

- Consider a lambertian scene lit with directional light
- Pixel color:

- Reflectance image depends only on object paint
- Shading image depends only on light and object shape (normals)

Integrating over incoming light

- General case

$$
L_{o}=\int \rho(I, O) L_{-} i(I) \cos \theta_{i}(I) d \Omega
$$

- Lambertian case

$$
L_{o}=\rho \int L_{-} i(I) \cos \theta_{i}(I) d \Omega
$$

Extension to color

- General case

$$
L_{o}(\lambda)=\int \rho(I, O, \lambda) L_{-} i(I, \lambda) \cos \theta_{i}(I) d \Omega
$$

- Lambertian case

$$
L_{o}(\lambda)=\rho(\lambda) \int L_{-} i(I, \lambda) \cos \theta_{i}(I) d \Omega
$$

Intrinsic image decomposition

$$
\begin{array}{cc}
I(x, y, \lambda)=\rho(x, y, \lambda) \int L_{i}(I, \lambda) \cos \theta_{i}(x, y, I) d \Omega \\
\text { Image "Reflectance" } & \text { "Shading" } \\
\text { image, } & \text { image } \\
\text { depends on } & \text { depends on } \\
\text { paint only } & \text { shape, } \\
& \text { lighting }
\end{array}
$$

Lambertian surfaces

Lambertian surfaces

Far

Slide credit: Jon Barron

Other lighting effects

Point Light Source

How to create an image

- Create objects
- Pick shape
- Pick material
- Is it Lambertian?
- Pick albedo
- Place objects in coordinate system
- Place lights
- Place camera
- Take image

Photometric stereo

Till now: 3D structure from multiple cameras

- Problems:
- requires calibrated cameras
- requires correspondence
- Other cues to 3D structure?

What does 3D structure mean?

- We have been talking about the depth of a pixel

What does 3D structure mean?

- But we can also look at the orientation of the surface at each pixel: surface normal

Not enough by itself to reveal absolute locations, but gives enough of a clue to object shape

Shading is a cue to surface orientation

Facing away from the sun, hence dark "shadow"

Facing the sun, hence
bright

Lambertian surfaces

- For a lambertian surface:

$$
\begin{aligned}
& L_{r}=\rho L_{i} \cos \theta_{i} \\
& \Rightarrow L_{r}=\rho L_{i} \mathbf{L} \cdot \mathbf{N}
\end{aligned}
$$

- L is direction to light source $\left(=\Omega_{i}\right)$
- L_{i} is intensity of light
- ρ is called albedo
- Think of this as paint
- High albedo: white colored surface
- Low albedo: black surface
- Varies from point to point

Lambertian surfaces

Lambertian surfaces

Lambertian surfaces

Lambertian surfaces

- Assume the light is directional: all rays from light source are parallel
- Equivalent to a light source infinitely far away
- All pixels get light from
 the same direction L and of the same intensity L_{i}

Reconstructing Lambertian surfaces

$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Equation is a constraint on albedo and normals
- Can we solve for albedo and normals?

Recovery from multiple images

$$
I(x, y)=\rho(x, y) L_{i} \mathbf{L} \cdot \mathbf{N}(x, y)
$$

- Represents an equation in the albedo and normals
- Multiple images give constraints on albedo and normals
- Solve for albedo and normals
- Called Photometric Stereo

Reconstruction with active sensors

Active stereo

- Stereo system where one camera is replaced with a projector.
- Projector outputs infrared pattern that makes correspondence easier.
- Image 1 is known pattern of stripes (output of projector)
- Image 2 is captured (see below)

Active stereo with

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Time-of-flight sensors

Time-of-flight sensor - I inAR

Active photometric stereo

Figure 1. (a) A cookie is pressed against the skin of an elastomer block. (b) The skin is distorted, as shown in this view from beneath. (c) The cookie's shape can be measured using photometric stereo and rendered at a novel viewpoint.

Active photometric sstereo

Fig. 1. (a) A parallel gripper WSG-50 with the new GelSight sensor gripping a chess Bishop.(b) Image captured by GelSight sensor during the grasp (c) The reconstructed 3D geometry from (b)

