Reconstruction

Perspective projection in rectified cameras

- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular row.

Epipolar constraint

- Reduces 2D search problem to search along a particular line: epipolar line

Epipolar constraint

True in general!

- Given pixel (x, y) in one image, corresponding pixel in the other image must lie on a line
- Line function of (x, y) and parameters of camera
- These lines are called epipolar line

Epipolar geometry

Epipolar geometry - why?

- For a single camera, pixel in image plane must correspond to point somewhere along a ray

Epipolar geometry

- When viewed in second image, this ray looks like a line: epipolar line
- The epipolar line must pass through image of the first camera in the second image - epipole

Epipolar geometry

Given an image point in one view, where is the corresponding point in the other view?

- A point in one view "generates" an epipolar line in the other view
- The corresponding point lies on this line

Epipolar line

Epipolar constraint

- Reduces correspondence problem to 1D search along an epipolar line

Epipolar lines

Epipolar lines

Epipolar lines

Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera centres and scene point

The camera centres, corresponding points and scene point lie in a single plane, known as the epipolar plane

Nomenclature

- The epipolar line \mathbf{I}^{\prime} is the image of the ray through \mathbf{x}
- The epipole \mathbf{e} is the point of intersection of the line joining the camera centres with the image plane
- this line is the baseline for a stereo rig, and
- the translation vector for a moving camera
- The epipole is the image of the centre of the other camera: $\mathbf{e}=P C^{\prime}, \mathbf{e}^{\prime}=\mathrm{P}^{\prime} \mathbf{C}$

The epipolar pencil

As the position of the 3D point \mathbf{X} varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an epipolar pencil (a pencil is a one parameter family).

All epipolar lines intersect at the epipole.

The epipolar pencil

As the position of the 3D point \mathbf{X} varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an epipolar pencil (a pencil is a one parameter family).

All epipolar lines intersect at the epipole.

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv K_{1}\left[\begin{array}{ll}
R_{1} & \mathbf{t}_{1}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv K_{2}\left[\begin{array}{ll}
R_{2} & \mathbf{t}_{2}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{aligned}
$$

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & 0
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{aligned}
$$

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\mathbf{x}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=R \mathbf{x}_{w}+\mathbf{t}
\end{aligned}
$$

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv \mathbf{x}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv R \mathbf{x}_{w}+\mathbf{t}
\end{gathered}
$$

Epipolar geometry - the math

- Assume intrinsic parameters K are identity
- Assume world coordinate system is centered at $1^{\text {st }}$ camera pinhole with Z along viewing direction

$$
\begin{gathered}
\lambda_{1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=\mathbf{x}_{w} \\
\lambda_{2} \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=R \mathbf{x}_{w}+\mathbf{t}
\end{gathered}
$$

Epipolar geometry - the math

$$
\begin{gathered}
\lambda_{2} \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=\lambda_{1} R \overrightarrow{\mathrm{x}}_{i m g}^{(1)}+\mathbf{t} \\
\lambda_{2} \mathbf{t} \times \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=\lambda_{1} \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}+\mathbf{t} \not \mathbf{C l}^{0} \\
\lambda_{2} \mathbf{t} \times \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=\lambda_{1} \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \\
\lambda_{2} \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \times \overrightarrow{\mathbf{x}}_{i m g}^{(2)+0}=\lambda_{1} \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \\
0=\lambda_{1} \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}
\end{gathered}
$$

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry: Visual derivation

Epipolar geometry - the math

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot \mathbf{t} \times R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Can we write this as matrix vector operations?
- Cross product can be written as a matrix

$$
\begin{aligned}
{[\mathbf{t}]_{\times}=} & {\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right] } \\
& {[\mathbf{t}]_{\times} \mathbf{a}=\mathbf{t} \times \mathbf{a} }
\end{aligned}
$$

Epipolar geometry - the math

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot[\mathbf{t}]_{\times} R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{T} \mathbf{b}
$$

Epipolar geometry - the math

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \cdot[\mathbf{t}]_{\times} R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Can we write this as matrix vector operations?
- Dot product can be written as a vector-vector times

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{T} \mathbf{b}
$$

Epipolar geometry - the math

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T}[\mathbf{t}]_{\times} R \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0 \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T} E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
\end{gathered}
$$

Epipolar geometry - the math

Epipolar constraint and epipolar lines

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T} E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Consider a known, fixed pixel in the first image
- What constraint does this place on the corresponding pixel?
- $\quad \overrightarrow{\mathbf{x}}_{i m g}^{(2) T} \mathbf{l}=0 \quad$ where $\quad \mathbf{l}=E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}$
-What kind of equation is this?

Epipolar constraint and epipolar lines

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2) T} E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=0
$$

- Consider a known, fixed pixel in the first image
- $\quad \overrightarrow{\mathbf{x}}_{i m g}^{(2) T} \mathbf{l}=0 \quad$ where $\quad \mathbf{l}=E \overrightarrow{\mathbf{x}}_{i m g}^{(1)}$

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}_{i m g}^{(2) T} 1 & =0 \\
\left.\Rightarrow \begin{array}{lll}
x_{2} & y_{2} & 1
\end{array}\right]\left[\begin{array}{l}
l_{x} \\
l_{y} \\
l_{z}
\end{array}\right] & =0 \\
\Rightarrow l_{x} x_{2}+l_{y} y_{2}+l_{z} & =0
\end{aligned}
$$

Epipolar constraint: putting it all together

- If \boldsymbol{p} is a pixel in first image and \mathbf{q} is the corresponding pixel in the second image, then:

$$
\mathbf{q}^{\top} E \mathbf{p}=0
$$

- $E=[t]_{X} R$
- For fixed \mathbf{p}, \mathbf{q} must satisfy: $\mathbf{q}^{\top} \mathbf{I}=0$, where $\mathbf{I}=E \boldsymbol{p}$

$$
\text { Epipolar line in } 2^{\text {nd }} \text { image }
$$

- For fixed \mathbf{q}, \mathbf{p} must satisfy:
$\mathbf{I}^{\top} \mathbf{p}=0$ where $\mathbf{I}^{\top}=\mathbf{q}^{\top} \mathbf{E}$, or $\mathbf{I}=E^{\mathrm{t}} \mathbf{q}$
- These are epipolar lines!

Essential matrix and epipoles

- $E=[t]_{X} R$

$$
\begin{aligned}
& \overrightarrow{\mathbf{c}_{2}}=\mathbf{t} \\
& {\overrightarrow{\mathbf{c}_{2}}}^{T} E=\mathbf{t}^{T} E=\mathbf{t}^{T}[\mathbf{t}]_{\times} R=0 \\
& {\overrightarrow{\mathbf{c}_{2}}}^{T} E \mathbf{p}=0 \quad \forall \mathbf{p}
\end{aligned}
$$

- Ep is an epipolar line in $2^{\text {nd }}$ image
- All epipolar lines in second image pass through c_{2}
- c_{2} is epipole in $2^{\text {nd }}$ image

Essential matrix and epipoles

- $\mathrm{E}=[\mathrm{t}]_{\mathrm{X}} \mathrm{R}$

$$
\overrightarrow{\mathbf{c}_{1}}=\mathbf{R}^{T} \mathbf{t}
$$

$$
\overrightarrow{E \overrightarrow{\mathbf{c}_{1}}}=[\mathbf{t}]_{\times} R R^{T} \mathbf{t}=[\mathbf{t}]_{\times} \mathbf{t}=0
$$

$$
\mathbf{q}^{T} E \overrightarrow{\mathbf{c}_{1}}=0 \quad \forall \mathbf{q}
$$

- $E^{\top} \mathbf{q}$ is an epipolar line in $1^{\text {st }}$ image
- All epipolar lines in first image pass through c_{1}
- c_{1} is the epipole in $1^{\text {st }}$ image

Epipolar geometry - the math

- We assumed that intrinsic parameters K are identity
- What if they are not?

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} & \equiv K_{1}\left[\begin{array}{ll}
R_{1} & \mathbf{t}_{1}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} & \equiv K_{2}\left[\begin{array}{ll}
R_{2} & \mathbf{t}_{2}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{aligned}
$$

Fundamental matrix

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv K_{1}\left[\begin{array}{ll}
I & 0
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv K_{2}\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{aligned}
$$

Fundamental matrix

$$
\begin{aligned}
& \lambda_{1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=K_{1}\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathrm{x}}_{w} \\
& \lambda_{2} \overrightarrow{\mathrm{x}}_{i m g}^{(2)}=K_{2}\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathrm{x}}_{w}
\end{aligned}
$$

Fundamental matrix

$$
\begin{aligned}
& \lambda_{1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=K_{1}\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
&=K_{1}\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
&=K_{1} \mathbf{x}_{w} \\
& \Rightarrow \lambda_{1} K_{1}^{-1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)}=\mathbf{x}_{w}
\end{aligned}
$$

Fundamental matrix

$$
\begin{aligned}
& \lambda_{2} \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=K_{2}\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
&=K_{2} R \mathbf{x}_{w}+K_{2} \mathbf{t} \\
&=\lambda_{1} K_{2} R K_{1}^{-1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)}+K_{2} \mathbf{t} \\
& \Rightarrow \lambda_{2} K_{2}^{-1} \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=\lambda_{1} R K_{1}^{-1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)}+\mathbf{t} \\
& \Rightarrow \lambda_{2}[\mathbf{t}]_{\times} K_{2}^{-1} \overrightarrow{\mathbf{x}}_{i m g}^{(2)}=\lambda_{1}[\mathbf{t}]_{\times} R K_{1}^{-1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \\
& \Rightarrow 0=\overrightarrow{\mathbf{x}}_{i m g}^{(2)} K_{2}^{-T}[\mathbf{t}]_{\times} R K_{1}^{-1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)}
\end{aligned}
$$

Fundamental matrix

$$
\begin{gathered}
\Rightarrow 0=\overrightarrow{\mathbf{x}}_{i m g}^{(2)} K_{2}^{-T}[\mathbf{t}]_{\times} R K_{1}^{-1} \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \\
\Rightarrow 0=\overrightarrow{\mathbf{x}}_{i m g}^{(2)} F \overrightarrow{\mathbf{x}}_{i m g}^{(1)}
\end{gathered}
$$

Fundamental matrix

Fundamental matrix result

$$
\mathbf{q}^{T} \mathbf{F} \mathbf{p}=0
$$

(Longuet-Higgins, 1981)

Properties of the Fundamental Matrix

- Fps the epipolar line associated with p
- $\mathbf{F}^{T} \mathbf{q}^{\text {s the epipolar line associated with }}$

Properties of the Fundamental Matrix

- Fpis the epipolar line associated with \mathbf{p}
- $\mathbf{F}^{T} \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F e}_{1}=\mathbf{0}$ and $\mathbf{F}^{T} \mathbf{e}_{2}=\mathbf{0}$
- All epipolar lines contain epipole

Properties of the Fundamental Matrix

- Fp is the epipolar line associated with \mathbf{p}
- $\mathbf{F}^{T} \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F e}_{1}=\mathbf{0}$ and $\mathbf{F}^{T} \mathbf{e}_{2}=\mathbf{0}$
- \mathbf{F} is rank 2

Why is F rank 2?

- F is a 3×3 matrix
- But there is a vector c_{1} and c_{2} such that $\mathrm{Fc}_{1}=0$ and $\mathrm{F}^{\top} \mathrm{C}_{2}=0$

Estimating F

- If we don't know $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{R}$, or \mathbf{t}, can we estimate \mathbf{F} for two images?
- Yes, given enough correspondences

Estimating F - 8-point algorithm

- The fundamental matrix F is defined by

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}=0
$$

for any pair of matches x and x^{\prime} in two images.

- Let $\mathrm{x}=(u, v, 1)^{\top}$ and $\mathrm{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{\top}, \quad \mathbf{F}=\left[\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33}\end{array}\right]$ each match gives a linear equation

$$
u u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0
$$

8-point algorithm

$$
\left[\begin{array}{ccccccccc}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
\vdots & \vdots \\
u_{n} u_{n}^{\prime} & v_{n} u_{n}^{\prime} & u_{n}^{\prime} & u_{n} v_{n}^{\prime} & v_{n} v_{n}^{\prime} & v_{n}^{\prime} & u_{n} & v_{n} & 1
\end{array}\right]\left[\begin{array}{c}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right]=0
$$

- In reality, instead of solvingAf $=0$, we seek \mathbf{f} to minimize $\|\mathbf{A f}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$.

8-point algorithm - Problem?

- F should have rank 2
- To enforce that \mathbf{F} is of rank $2, F$ is replaced by F^{\prime} that minimizes $\left\|\mathbf{F}-\mathbf{F}^{\prime}\right\|$ subject to the rank constraint.
- This is achieved by SVD. Let $\mathbf{F}=\mathbf{U} \Sigma \mathbf{V}$, ${ }^{\text {T }}$ where

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right] \text {, let } \quad \Sigma^{\prime}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then $\mathbf{F}^{\prime}=\mathbf{U} \Sigma^{\prime} \mathbf{V}^{\mathrm{T}}$ is the solution.

Recovering camera parameters from F / E

- Can we recover R and t between the cameras from F ?

$$
F=K_{2}^{-T}[\mathbf{t}]_{\times} R K_{1}^{-1}
$$

- No: K_{1} and K_{2} are in principle arbitrary matrices
- What if we knew K_{1} and K_{2} to be identity?

$$
E=[\mathbf{t}]_{\times} R
$$

Recovering camera parameters from E

$$
\begin{aligned}
& E=[\mathbf{t}]_{\times} R \\
& \mathbf{t}^{T} E=\mathbf{t}^{T}[\mathbf{t}]_{\times} R=0 \\
& E^{T} \mathbf{t}=0
\end{aligned}
$$

- \mathbf{t} is a solution to $\mathrm{E}^{\top} \mathbf{x}=0$
- Can't distinguish between \mathbf{t} and ct for constant scalar c
- How do we recover R?

Recovering camera parameters from E

$$
E=[\mathbf{t}]_{\times} R
$$

- We know E and t
- Consider taking SVD of E and $[\mathrm{t}]_{\mathrm{X}}$

$$
\begin{gathered}
{[\mathbf{t}]_{\times}=U \Sigma V^{T}} \\
E=U^{\prime} \Sigma^{\prime} V^{\prime T} \\
U^{\prime} \Sigma^{\prime} V^{\prime T}=E=[\mathbf{t}]_{\times} R=U \Sigma V^{T} R \\
U^{\prime} \Sigma^{\prime} V^{\prime T}=U \Sigma V^{T} R \\
V^{\prime T}=V^{T} R
\end{gathered}
$$

Recovering camera parameters from E

$$
\begin{aligned}
& E=[\mathbf{t}]_{\times} R \\
& \mathbf{t}^{T} E=\mathbf{t}^{T}[\mathbf{t}]_{\times} R=0 \\
& E^{T} \mathbf{t}=0
\end{aligned}
$$

- \mathbf{t} is a solution to $\mathrm{E}^{\top} \mathbf{x}=0$
- Can't distinguish between \mathbf{t} and ct for constant scalar c

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise
- Degenerate: if points are on same plane
- Normalized 8-point algorithm: Hartley
- Position origin at centroid of image points
- Rescale coordinates so that center to farthest point is sqrt (2)

