
Reconstruction

Reconstruction

• The forward process:
• Given

• 3D shapes
• Their locations+orientations
• Their material+paint
• Light directions+intensity
• The Camera parameters

• Produce the image

• Reconstruction: Reverse this process
• Next two/three classes: reconstructing geometry

Final perspective projection

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘ P~xw

Camera intrinsics:
how your camera
handles pixel.
Changes if you
change your camera

Camera extrinsics: where your camera is relative
to the world. Changes if you move the camera

Final perspective projection

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘ P~xw

Camera parameters

Camera calibration

• Goal: find the parameters of the camera

• Why?
• Tells you where the camera is relative to the world/particular objects
• Equivalently, tells you where objects are relative to the camera
• Can allow you to ”render” new objects into the scene

~ximg ⌘ K
⇥
R t

⇤
~xw

Camera calibration

• Need to estimate P
• How many parameters does P have?

• Size of P : 3 x 4
• But:
• P can only be known upto a scale
• 3*4 - 1 = 11 parameters

~ximg ⌘ P~xw

�P~xw ⌘ P~xw

Camera calibration

• Suppose we know that (X,Y,Z) in the world projects
to (x,y) in the image.
• How many equations does this provide?

~ximg ⌘ P~xw

2

4
x
y
1

3

5 ⌘ P

2

664

X
Y
Z
1

3

775
Need to convert equivalence
into equality.

Camera calibration

• Suppose we know that (X,Y,Z) in the world projects
to (x,y) in the image.
• How many equations does this provide?

~ximg ⌘ P~xw

2

4
�x
�y
�

3

5 = P

2

664

X
Y
Z
1

3

775
Note: 𝜆 is
unknown

Camera calibration

• Suppose we know that (X,Y,Z) in the world projects
to (x,y) in the image.
• How many equations does this provide?

~ximg ⌘ P~xw

2

4
�x
�y
�

3

5 =

2

4
P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

3

5

2

664

X
Y
Z
1

3

775

Camera calibration

• Suppose we know that (X,Y,Z) in the world projects
to (x,y) in the image.
• How many equations does this provide?

~ximg ⌘ P~xw

�x = P11X + P12Y + P13Z + P14

�y = P21X + P22Y + P23Z + P24

� = P31X + P32Y + P33Z + P34

Camera calibration

• Suppose we know that (X,Y,Z) in the world projects
to (x,y) in the image.
• How many equations does this provide?

• 2 equations!
• Are the equations linear in the parameters?
• How many equations do we need?

~ximg ⌘ P~xw

(P31X + P32Y + P33Z + P34)x = P11X + P12Y + P13Z + P14

(P31X + P32Y + P33Z + P34)y = P21X + P22Y + P23Z + P24

Camera calibration

• In matrix vector form: Ap = 0
• 6 points give 12 equations, 12 variables to solve for
• But can only solve upto scale

(P31X + P32Y + P33Z + P34)x = P11X + P12Y + P13Z + P14

(P31X + P32Y + P33Z + P34)y = P21X + P22Y + P23Z + P24

XxP31 + Y xP32 + ZxP33 + xP34 �XP11 � Y P12 � ZP13 � P14 = 0

Camera calibration

• In matrix vector form: Ap = 0
• We want non-trivial solutions
• If p is a solution, 𝛼p is a solution too
• Let’s just search for a solution with unit norm

Ap = 0

kpk = 1
s.t

Camera calibration

• In matrix vector form: Ap = 0
• We want non-trivial solutions
• If p is a solution, 𝛼p is a solution too
• Alternative form to deal with noisy inputs

• How do you solve this?
• Eigenvector of ATA with smallest eigenvalue!

kpk = 1
s.t

min
p

kApk2 ⌘ min
p

pTATAp

Camera calibration

• We need 6 world points for which we know image locations
• Would any 6 points work?

• What if all 6 points are the same?

• Need at least 6 non-coplanar points!

Camera calibration

• How do we get K, R and t from P?
• Need to make some assumptions about K
• What if K is upper triangular?

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘ P~xw

K =

2

4
sx ↵ tu
0 sy tv
0 0 1

3

5

Added skew if image x and y
axes are not perpendicular

Camera calibration
• How do we get K, R and t from P?
• Need to make some assumptions about K
• What if K is upper triangular?

• P = K [R t]
• First 3 x 3 matrix of P is KR
• “RQ” decomposition: decomposes an n x n matrix

into product of upper triangular and rotation matrix

K =

2

4
sx ↵ tu
0 sy tv
0 0 1

3

5

Camera calibration
• How do we get K, R and t from P?
• Need to make some assumptions about K
• What if K is upper triangular?
• P = K [R t]
• First 3 x 3 matrix of P is KR
• “RQ” decomposition: decomposes an n x n matrix

into product of upper triangular and rotation matrix
• t = K-1P[:,2] ß last column of P

Camera calibration and pose estimation

• Where camera is relative to car
equivalent to where car is
relative to camera

Reconstructing world points given camera

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘ P~xw

Can we recover this
from just a single
equation?

Ambiguity

• A pixel corresponds to an entire ray
• 2 linear equations in 3D space

• Need additional constraints!

Triangulation

• A pixel corresponds to an entire ray
• 2 linear equations in 3D space

• If we have corresponding pixel from another view, can intersect rays!
• 4 equations

Binocular stereo

• Single
• If we know where cameras are, we can shoot rays from corresponding

pixels and intersect

Triangulation

• Suppose we have two cameras
• Calibrated: parameters known

• And a pair of corresponding pixels
• Find 3D location of point!

Triangulation

• Suppose we have two cameras
• Calibrated: parameters known

• And a pair of corresponding pixels
• Find 3D location of point!

(x1,y1)
(x2,y2)

P (1) P (2)

Triangulation

~x(2)
img ⌘ P (2)~xw

~x(1)
img ⌘ P (1)~xw

2

4
x1

y1
1

3

5

2

4
x2

y2
1

3

5

2

664

X
Y
Z
1

3

775

Triangulation

~x(1)
img ⌘ P (1)~xw

�x1 = P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

�y1 = P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

� = P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

(P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34)x1 = P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

X(P (1)
31 x1 � P (1)

11) + Y (P (1)
32 x1 � P (1)

12) + Z(P (1)
33 x1 � P (1)

13) + (P (1)
34 x1 � P (1)

14) = 0

Triangulation

• 1 image gives 2 equations
• Need 2 images!
• Solve linear equations to get 3D point location

~x(1)
img ⌘ P (1)~xw

X(P (1)
31 x1 � P (1)

11) + Y (P (1)
32 x1 � P (1)

12) + Z(P (1)
33 x1 � P (1)

13) + (P (1)
34 x1 � P (1)

14) = 0

X(P (1)
31 y1 � P (1)

21) + Y (P (1)
32 y1 � P (1)

22) + Z(P (1)
33 y1 � P (1)

23) + (P (1)
34 y1 � P (1)

24) = 0

Linear vs non-linear optimization

�x1 = P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

�y1 = P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

� = P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

x1 =
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

y1 =
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

Linear vs non-linear optimization

x1 =
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

y1 =
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

(x1 �
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

+(y1 �
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

Reprojection error

Linear vs non-linear optimization

• Reprojection error is the squared error between the
true image coordinates of a point and the projected
coordinates of hypothesized 3D point
• Actual error we care about
• Minimize total sum of reprojection error across all

images
• Non-linear optimization

(x1 �
P (1)
11 X + P (1)

12 Y + P (1)
13 Z + P (1)

14

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

+(y1 �
P (1)
21 X + P (1)

22 Y + P (1)
23 Z + P (1)

24

P (1)
31 X + P (1)

32 Y + P (1)
33 Z + P (1)

34

)2

Reprojection error

Binocular stereo

• Given two calibrated cameras
• Find pairs of corresponding pixels
• Use corresponding image locations to set up equations on world coordinates
• Solve!

Binocular stereo

• General case: cameras can be arbitrary locations and orientations

Binocular stereo

• Special case: cameras are parallel to each other and translated along
X axis

Z axis

X axis

Stereo with rectified cameras

• Special case: cameras are parallel to each other and translated along
X axis

Z axis

X axis

Stereo head

Kinect / depth cameras

Stereo with “rectified cameras”

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

t =

2

4
tx
0
0

3

5

~x(1)
img ⌘

⇥
I 0

⇤
~xw

~x(2)
img ⌘

⇥
I t

⇤
~xw

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

t =

2

4
tx
0
0

3

5~xw =

2

664

X
Y
Z
1

3

775 =

xw

1

�

~x(1)
img ⌘

⇥
I 0

⇤
~xw

~x(2)
img ⌘

⇥
I t

⇤
~xw

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

~x(1)
img ⌘

⇥
I 0

⇤ xw

1

�
= xw =

2

4
X
Y
Z

3

5

~x(2)
img ⌘

⇥
I t

⇤ xw

1

�
= xw + t =

2

4
X + tx

Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

~x(2)
img ⌘

2

4
X + tx

Y
Z

3

5

~x(1)
img ⌘

2

4
X
Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera2

4
x1

y1
1

3

5 ⌘

2

4
X
Y
Z

3

5

2

4
x2

y2
1

3

5 ⌘

2

4
X + tx

Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera2

4
x1

y1
1

3

5 ⌘

2

4
X
Y
Z

3

5

2

4
x2

y2
1

3

5 ⌘

2

4
X + tx

Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

2

4
�x2

�y2
�

3

5 =

2

4
X + tx

Y
Z

3

5

2

4
�x1

�y1
�

3

5 =

2

4
X
Y
Z

3

5

Perspective projection in rectified cameras

• Without loss of generality, assume origin is at
pinhole of 1st camera

x1 =
X

Z
x2 =

X + tx
Z

y2 =
Y

Z
y1 =

Y

Z

Y coordinate is the same!

X coordinate differs by tx/Z

Perspective projection in rectified cameras

• For rectified cameras, correspondence problem is
easier
• Only requires searching along a particular row.

Rectifying cameras

• Given two images from two cameras with known P, can we
rectify them?
• Can we create new images corresponding to a rectified setup?

Rectifying cameras

• Can we rotate / translate cameras?
• Do we need to know the 3D structure of the world to do

this?

Rotating cameras

• Assume K is identity
• Assume coordinate system at camera pinhole

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘
⇥
I 0

⇤
~xw

⌘
⇥
I 0

⇤ xw

1

�

⌘xw

Rotating cameras

• Assume K is identity
• Assume coordinate system at camera pinhole

~ximg ⌘ K
⇥
R t

⇤
~xw

~ximg ⌘
⇥
I 0

⇤
~xw

⌘
⇥
I 0

⇤ xw

1

�

⌘xw

Rotating cameras

~ximg ⌘ xw

• What happens if the camera is rotated?

~ximg ⌘
⇥
I 0

⇤ xw

1

�

~x0
img ⌘

⇥
R 0

⇤ xw

1

�

⌘ Rxw

⌘ R~ximg

Rotating cameras
• What happens if the camera is rotated?

• No need to know the 3D structure

~x0
img ⌘ R~ximg

Rotation matrix

Homogenous
coordinates of
original pixel

Homogenous
coordinates of
mapped pixel

Rotating cameras

Rectifying cameras

Rectifying cameras

Rectifying cameras

Rectifying cameras

