Reconstruction

## Reconstruction

- The forward process:
- Given
- 3D shapes
- Their locations+orientations
- Their material+paint
- Light directions+intensity
- The Camera parameters
- Produce the image
- Reconstruction: Reverse this process
- Next two/three classes: reconstructing geometry


## Final perspective projection



Final perspective projection

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \\
& \text { Camear parameters }
\end{aligned}
$$

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

## Camera calibration

- Goal: find the parameters of the camera

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Why?
- Tells you where the camera is relative to the world/particular objects
- Equivalently, tells you where objects are relative to the camera
- Can allow you to "render" new objects into the scene


## Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Need to estimate $P$
- How many parameters does $P$ have?
- Size of P:3x4
- But: $\lambda P \overrightarrow{\mathbf{x}}_{w} \equiv P \overrightarrow{\mathbf{x}}_{w}$
- P can only be known upto a scale
- 3*4-1 = 11 parameters


## Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) in the world projects to ( $\mathrm{x}, \mathrm{y}$ ) in the image.
- How many equations does this provide?

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \equiv P\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]_{\substack{\text { Need to ocivert equivalence } \\
\text { intoequalit. }}}
$$

## Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ( $X, Y, Z$ ) in the world projects to ( $\mathrm{x}, \mathrm{y}$ ) in the image.
- How many equations does this provide?

$$
\begin{gathered}
\text { Note: } \lambda \text { is } \\
\text { unknown }
\end{gathered}\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=P\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

## Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) in the world projects to ( $\mathrm{x}, \mathrm{y}$ ) in the image.
- How many equations does this provide?

$$
\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{llll}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

## Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) in the world projects to ( $\mathrm{x}, \mathrm{y}$ ) in the image.
- How many equations does this provide?

$$
\begin{aligned}
\lambda x & =P_{11} X+P_{12} Y+P_{13} Z+P_{14} \\
\lambda y & =P_{21} X+P_{22} Y+P_{23} Z+P_{24} \\
\lambda & =P_{31} X+P_{32} Y+P_{33} Z+P_{34}
\end{aligned}
$$

## Camera calibration

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

- Suppose we know that ( $X, Y, Z$ ) in the world projects to ( $x, y$ ) in the image.
- How many equations does this provide?

$$
\begin{aligned}
& \left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) x=P_{11} X+P_{12} Y+P_{13} Z+P_{14} \\
& \left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) y=P_{21} X+P_{22} Y+P_{23} Z+P_{24}
\end{aligned}
$$

- 2 equations!
- Are the equations linear in the parameters?
- How many equations do we need?


## Camera calibration

$$
\begin{gathered}
\left(P_{31} X+P_{32} Y+P_{33} Z+P_{34}\right) x=P_{11} X+P_{12} Y+P_{13} Z+P_{14} \\
X x P_{31}+Y x P_{32}+Z x P_{33}+x P_{34}-X P_{11}-Y P_{12}-Z P_{13}-P_{14}=0
\end{gathered}
$$

- In matrix vector form: $A p=0$
- 6 points give 12 equations, 12 variables to solve for
- But can only solve upto scale


## Camera calibration

- In matrix vector form: $\mathrm{Ap}=0$
- We want non-trivial solutions
- If $p$ is a solution, $\alpha p$ is a solution too
- Let's just search for a solution with unit norm

$$
\begin{aligned}
& \underset{\substack{\text { s.t } \\
\| \mathbf{p}}}{ }=0
\end{aligned}
$$

## Camera calibration

- In matrix vector form: $\mathrm{Ap}=0$
- We want non-trivial solutions
- If $p$ is a solution, $\alpha p$ is a solution too
- Alternative form to deal with noisy inputs

$$
\begin{gathered}
\min _{\mathbf{p}}\|A \mathbf{p}\|^{2} \equiv \min _{\mathbf{p}} \mathbf{p}^{T} A^{T} A \mathbf{p} \\
\|\mathbf{p}\|=1
\end{gathered}
$$

- How do you solve this?
- Eigenvector of $A^{\top} A$ with smallest eigenvalue!


## Camera calibration

- We need 6 world points for which we know image locations
- Would any 6 points work?
- What if all 6 points are the same?
- Need at least 6 non-coplanar points!


## Camera calibration

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

- How do we get $K, R$ and $t$ from P?
- Need to make some assumptions about K
- What if K is upper triangular?

$$
K=\left[\begin{array}{ccc}
s_{x} & \alpha & t_{u} \\
0 & s_{y} & t_{v} \\
0 & 0 & 1
\end{array}\right]
$$

Added skew if image $x$ and $y$
axes are not perpendicular

## Camera calibration

- How do we get $K, R$ and $t$ from $P$ ?
- Need to make some assumptions about $K$
- What if K is upper triangular?

$$
K=\left[\begin{array}{ccc}
s_{x} & \alpha & t_{u} \\
0 & s_{y} & t_{v} \\
0 & 0 & 1
\end{array}\right]
$$

- $P=K[R t]$
- First $3 \times 3$ matrix of $P$ is $K R$
- "RQ" decomposition: decomposes an $\mathrm{n} \times \mathrm{n}$ matrix into product of upper triangular and rotation matrix


## Camera calibration

- How do we get $K, R$ and $t$ from $P$ ?
- Need to make some assumptions about K
- What if K is upper triangular?
- $P=K[R t]$
- First $3 \times 3$ matrix of $P$ is $K R$
- "RQ" decomposition: decomposes an $\mathrm{n} \times \mathrm{n}$ matrix into product of upper triangular and rotation matrix
- $t=K^{-1} P[:, 2] \leftarrow$ last column of $P$


## Camera calibration and pose estimation

- Where camera is relative to car equivalent to where car is relative to camera


## Reconstructing world points given camera

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \begin{array}{l}
\text { Can we recover this } \\
\text { from just a single } \\
\text { equation? }
\end{array} \\
& \overrightarrow{\mathbf{X}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
\end{aligned}
$$

## Ambiguity

- A pixel corresponds to an entire ray
- 2 linear equations in 3D space
- Need additional constraints!



## Triangulation

- A pixel corresponds to an entire ray
- 2 linear equations in 3D space
- If we have corresponding pixel from another view, can intersect rays!
- 4 equations



## Binocular stereo

- Single
- If we know where cameras are, we can shoot rays from corresponding pixels and intersect



## Triangulation

- Suppose we have two cameras
- Calibrated: parameters known
- And a pair of corresponding pixels
- Find 3D location of point!



## Triangulation

- Suppose we have two cameras
- Calibrated: parameters known
- And a pair of corresponding pixels
- Find 3D location of point!



## Triangulation

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \longrightarrow \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv P^{(1)} \overrightarrow{\mathbf{x}}_{w}} \\
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \quad\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]}
\end{aligned}
$$

## Triangulation

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv P^{(1)} \overrightarrow{\mathbf{x}}_{w}
$$

$$
\begin{gathered}
\lambda x_{1}=P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)} \\
\lambda y_{1}=P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)} \\
\lambda=P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)} \\
\left(P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}\right) x_{1}=P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)} \\
X\left(P_{31}^{(1)} x_{1}-P_{11}^{(1)}\right)+Y\left(P_{32}^{(1)} x_{1}-P_{12}^{(1)}\right)+Z\left(P_{33}^{(1)} x_{1}-P_{13}^{(1)}\right)+\left(P_{34}^{(1)} x_{1}-P_{14}^{(1)}\right)=0
\end{gathered}
$$

## Triangulation

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv P^{(1)} \overrightarrow{\mathbf{x}}_{w} \\
X\left(P_{31}^{(1)} x_{1}-P_{11}^{(1)}\right)+Y\left(P_{32}^{(1)} x_{1}-P_{12}^{(1)}\right)+Z\left(P_{33}^{(1)} x_{1}-P_{13}^{(1)}\right)+\left(P_{34}^{(1)} x_{1}-P_{14}^{(1)}\right)=0 \\
X\left(P_{31}^{(1)} y_{1}-P_{21}^{(1)}\right)+Y\left(P_{32}^{(1)} y_{1}-P_{22}^{(1)}\right)+Z\left(P_{33}^{(1)} y_{1}-P_{23}^{(1)}\right)+\left(P_{34}^{(1)} y_{1}-P_{24}^{(1)}\right)=0
\end{gathered}
$$

- 1 image gives 2 equations
- Need 2 images!
- Solve linear equations to get 3D point location


## Linear vs non-linear optimization

$$
\begin{aligned}
\lambda x_{1} & =P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)} \\
\lambda y_{1} & =P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)} \\
\lambda & =P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)} \\
x_{1} & =\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}} \\
y_{1} & =\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}
\end{aligned}
$$

## Linear vs non-linear optimization

$$
\begin{aligned}
& x_{1}=\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}} \\
& y_{1}=\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}
\end{aligned}
$$

$$
\begin{array}{|l}
\left(x_{1}-\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2} \\
+\left(y_{1}-\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2}
\end{array}
$$

## Linear vs non-linear optimization

$$
\begin{array}{|c}
\hline\left(x_{1}-\frac{P_{11}^{(1)} X+P_{12}^{(1)} Y+P_{13}^{(1)} Z+P_{14}^{(1)}}{\left.P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}\right)^{2}}\right. \\
+\left(y_{1}-\frac{P_{21}^{(1)} X+P_{22}^{(1)} Y+P_{23}^{(1)} Z+P_{24}^{(1)}}{P_{31}^{(1)} X+P_{32}^{(1)} Y+P_{33}^{(1)} Z+P_{34}^{(1)}}\right)^{2} \\
\hline \text { Reprojection error }
\end{array}
$$

- Reprojection error is the squared error between the true image coordinates of a point and the projected coordinates of hypothesized 3D point
- Actual error we care about
- Minimize total sum of reprojection error across all images
- Non-linear optimization


## Binocular stereo

- Given two calibrated cameras
- Find pairs of corresponding pixels
- Use corresponding image locations to set up equations on world coordinates
- Solve!


## Binocular stereo

- General case: cameras can be arbitrary locations and orientations



## Binocular stereo

- Special case: cameras are parallel to each other and translated along $X$ axis



## Stereo with rectified cameras

- Special case: cameras are parallel to each other and translated along $X$ axis


Stereo head


Kinect / depth cameras


## Stereo with "rectified cameras"



## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
0 \\
0
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\mathbf{x}_{w}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

$$
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} \equiv\left[\begin{array}{ll}
I & \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\mathbf{x}_{w}+\mathbf{t}=\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{(1)} & \equiv\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \\
\overrightarrow{\mathbf{x}}_{i m g}^{(2)} & \equiv\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \equiv\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \equiv\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{aligned}
& {\left[\begin{array}{c}
\lambda x_{1} \\
\lambda y_{1} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
\lambda x_{2} \\
\lambda y_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
X+t_{x} \\
Y \\
Z
\end{array}\right]}
\end{aligned}
$$

## Perspective projection in rectified cameras

- Without loss of generality, assume origin is at pinhole of $1^{\text {st }}$ camera

$$
\begin{array}{cl}
\mathrm{X} \text { coordinate differs by } \mathrm{t}_{\mathrm{x}} / Z \\
x_{1}=\frac{X}{Z} & x_{2}=\frac{X+t_{x}}{Z} \\
y_{1}=\frac{Y}{Z} & y_{2}=\frac{Y}{Z}
\end{array}
$$

Y coordinate is the same!

## Perspective projection in rectified cameras



- For rectified cameras, correspondence problem is easier
- Only requires searching along a particular row.


## Rectifying cameras

- Given two images from two cameras with known P, can we rectify them?



## Rectifying cameras

- Can we rotate / translate cameras?



## Rotating cameras

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Assume K is identity
- Assume coordinate system at camera pinhole

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} & \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \equiv \mathbf{x}_{w}
\end{aligned}
$$

## Rotating cameras

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

- Assume K is identity
- Assume coordinate system at camera pinhole

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} & \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \equiv \mathbf{x}_{w}
\end{aligned}
$$

## Rotating cameras

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}_{i m g} \equiv\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \overrightarrow{\mathbf{x}}_{i m g} \equiv \mathbf{x}_{w}
\end{aligned}
$$

- What happens if the camera is rotated?

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g}^{\prime} & \equiv\left[\begin{array}{ll}
R & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right] \\
& \equiv R \mathbf{x}_{w} \\
& \equiv R \overrightarrow{\mathbf{x}}_{i m g}
\end{aligned}
$$

## Rotating cameras

- What happens if the camera is rotated?

- No need to know the 3D structure


## Rotating cameras



Rectifying cameras


Rectifying cameras


$$
\square_{\diamond}
$$

Rectifying cameras



