Geometry of Image Formation

The pinhole camera

- Let's abstract out the details

The pinhole camera

- We don't care about the other walls of the box, so let's remove those

The pinhole camera

- Let's look at a individual points in the world and not worry about what they are.

The pinhole camera

- Let's place the origin at the pinhole, with Z axis pointing away from the screen (called camera plane)

The pinhole camera

- Let's remove the wall with the pinhole: all we care about is that all light rays of interest must pass through the pinhole, i.e., the origin

The pinhole camera

- Question: Where will we see the "image" of point P on the camera plane?

The pinhole camera

The pinhole camera

- Pinhole camera collapses ray OP to point p
- Any point on ray OP $=0+$ $\lambda(P-O)=(\lambda X, \lambda Y, \lambda Z)$
- For this point to lie on $\mathrm{Z}=-1$ plane:

$$
\begin{aligned}
& \lambda^{*} Z=-1 \\
& \Rightarrow \lambda^{*}=\frac{-1}{Z}
\end{aligned}
$$

- Coordinates of point p:

$$
\left(\lambda^{*} X, \lambda^{*} Y, \lambda^{*} Z\right)=\left(\frac{-X}{Z}, \frac{-Y}{Z},-1\right)
$$

The projection equation

- A point $P=(X, Y, Z)$ in $3 D$ projects to a point $p=(x, y)$ in the image

$$
\begin{aligned}
& x=\frac{-X}{Z} \\
& y=\frac{-Y}{Z}
\end{aligned}
$$

- But pinhole camera's image is inverted, invert it back!

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

Another derivation

A virtual image plane

- A pinhole camera produces an inverted image
- Imagine a "virtual image plane" in the front of the camera

The projection equation

$$
\begin{aligned}
x & =\frac{X}{Z} \\
y & =\frac{Y}{Z}
\end{aligned}
$$

Consequence 1: Farther away objects are smaller

$\begin{aligned} & \text { Image of foot: }\left(\frac{X}{Z}, \frac{Y}{Z}\right) \\ & \text { Image of head: }\left(\frac{X}{Z}, \frac{Y+h}{Z}\right)\end{aligned} \quad \frac{Y+h}{Z}-\frac{Y}{Z}=\frac{h}{Z}$

Consequence 2: Parallel lines converge at a point

- Point on a line passing through point A with direction D:

$$
Q(\lambda)=A+\lambda D
$$

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

Consequence 2: Parallel lines converge at a point

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

- $A=\left(A_{X}, A_{Y}, A_{Z}\right)$
- $B=\left(B_{X}, B_{Y}, B_{Z}\right)$

- $D=\left(D_{X}, D_{Y}, D_{Z}\right)$

Consequence 2: Parallel lines converge at a point

- $Q(\lambda)=\left(A_{X}+\lambda D_{X}, A_{Y}+\lambda D_{Y}, A_{Z}+\lambda D_{Z}\right)$
- $R(\lambda)=\left(B_{X}+\lambda D_{X}, B_{Y}+\lambda D_{Y}, B_{Z}+\lambda D_{Z}\right)$
- $q(\lambda)=\left(\frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right)$
- $r(\lambda)=\left(\frac{B_{X}+\lambda D_{X}}{B_{Z}+\lambda D_{Z}}, \frac{B_{Y}+\lambda D_{Y}}{B_{Z}+\lambda D_{Z}}\right)$
- Need to look at these points as
 Z goes to infinity
- Same as $\lambda \rightarrow \infty$

Consequence 2: Parallel lines converge at a point

- $q(\lambda)=\left(\frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right)$
- $r(\lambda)=\left(\frac{B_{X}+\lambda D_{X}}{B_{Z}+\lambda D_{Z}}, \frac{B_{Y}+\lambda D_{Y}}{B_{Z}+\lambda D_{Z}}\right)$

$$
\lim _{\lambda \rightarrow \infty} \frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}=\lim _{\lambda \rightarrow \infty} \frac{\frac{A_{X}}{\lambda}+D_{X}}{\frac{A_{Z}}{\lambda}+D_{Z}}=\frac{D_{X}}{D_{Z}}
$$

$$
\lim _{\lambda \rightarrow \infty} q(\lambda)=\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)
$$

$$
\lim _{\lambda \rightarrow \infty} r(\lambda)=\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)
$$

Consequence 2: Parallel lines converge at a point

- Parallel lines have the same direction but pass through different points

$$
\begin{aligned}
& Q(\lambda)=A+\lambda D \\
& R(\lambda)=B+\lambda D
\end{aligned}
$$

- Parallel lines converge at the same point $\left(\frac{D_{X}}{D_{Z}}, \frac{D_{Y}}{D_{Z}}\right)$
- This point of convergence is called the vanishing point
- What happens if $D_{Z}=0$?

Consequence 2: Parallel lines converge at a point

What about planes?

$$
\begin{aligned}
& N_{X} X+N_{Y} Y+N_{Z} Z=d \\
\Rightarrow & N_{X} \frac{X}{Z}+N_{Y} \frac{Y}{Z}+N_{Z}=\frac{d}{Z} \\
\Rightarrow & N_{X} x+N_{Y} y+N_{Z}=\frac{d}{Z}
\end{aligned}
$$

Take the limit as Z approaches infinity

$$
N_{X} x+N_{Y} y+N_{Z}=0
$$

What about planes?

$N_{X} X+N_{Y} Y+N_{Z} Z=d$
Normal: $\left(N_{X}, N_{V}, N_{Z}\right)$
What do parallel planes look like?

$N_{X} X+N_{Y} Y+N_{Z} Z=c$

Vanishing lines
Parallel planes converge!

Vanishing line

$$
N_{X} X+N_{Y} Y+N_{Z} Z=d
$$

- What happens if $\mathrm{N}_{\mathrm{X}}=\mathrm{N}_{\mathrm{Y}}=0$?
- Equation of the plane: $Z=c$
- Vanishing line?

Changing coordinate systems

Rotations and translations

- How do you represent a rotation?
- A point in 3D: (X,Y,Z)
- Rotations can be represented as a matrix multiplication

$$
\mathbf{v}^{\prime}=R \mathbf{v}
$$

-What are the properties of rotation matrices?

Properties of rotation matrices

- Rotation does not change the length of vectors

$$
\begin{gathered}
\mathbf{v}^{\prime}=R \mathbf{v} \\
\left\|\mathbf{v}^{\prime}\right\|^{2}=\mathbf{v}^{\prime T} \mathbf{v}^{\prime} \\
=\mathbf{v}^{T} R^{T} R \mathbf{v} \\
\|\mathbf{v}\|^{2}=\mathbf{v}^{T} \mathbf{v} \\
\Rightarrow R^{T} R=I
\end{gathered}
$$

Properties of rotation matrices

$$
\begin{aligned}
& \Rightarrow R^{T} R=I \\
& \Rightarrow \operatorname{det}(R)^{2}=1 \\
& \Rightarrow \operatorname{det}(R)= \pm 1
\end{aligned}
$$

$$
\begin{array}{cc}
\operatorname{det}(R)=1 & \operatorname{det}(R)=-1 \\
\text { Rotation } & \text { Reflection }
\end{array}
$$

Translations

$$
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{t}
$$

- Can this be written as a matrix multiplication?

Till now

- We assumed coordinate system:
- With origin at pinhole
- With Z axis along viewing direction
- Let us call this "camera coordinate system"
- What about the world coordinate system?

Aligning coordinate systems

- Suppose according to the world coordinate system
- Camera is at \boldsymbol{c}
- Pointing in direction \boldsymbol{v}
- The camera's vertical direction is \boldsymbol{u}
- And its horizontal direction is \boldsymbol{w}

Aligning coordinate systems

- Consider a point with coordinates \boldsymbol{p} in the world coordinates
- To express it in camera coordinates, we need to rotate and translate
- $\boldsymbol{q}=R \boldsymbol{p}+\boldsymbol{t}$
- Where R is a rotation matrix
- What should R and t be?

Aligning coordinate systems

- Let's first figure out R

$$
\begin{aligned}
& R \boldsymbol{v}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& R \boldsymbol{u}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& R \boldsymbol{w}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Aligning coordinate systems

- Let's first figure out R

$$
\begin{gathered}
\Rightarrow R\left[\begin{array}{lll}
\boldsymbol{w} & \boldsymbol{u} & \boldsymbol{v}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{I} \\
\Rightarrow R^{T} R\left[\begin{array}{lll}
\boldsymbol{w} & \boldsymbol{u} & \boldsymbol{v}
\end{array}\right]=R^{T} \\
\Rightarrow R^{T}=\left[\begin{array}{lll}
\boldsymbol{w} & \boldsymbol{u} & \boldsymbol{v}
\end{array}\right] \\
\Rightarrow R=\left[\begin{array}{lll}
\boldsymbol{w} & \boldsymbol{u} & \boldsymbol{v}
\end{array}\right]^{T}
\end{gathered}
$$

Aligning coordinate systems

- Let us next figure out \boldsymbol{t}

$$
\begin{aligned}
& R \boldsymbol{c}+\boldsymbol{t}=\mathbf{0} \\
& \Rightarrow \boldsymbol{t}=-\mathrm{R} \boldsymbol{c}
\end{aligned}
$$

- Thus:

$$
\begin{aligned}
& R=\left[\begin{array}{lll}
\boldsymbol{w} & \boldsymbol{u} & \boldsymbol{v}
\end{array}\right]^{\mathrm{T}} \\
& \boldsymbol{t}=-R \boldsymbol{c}
\end{aligned}
$$

Putting everything together

- Change coordinate system so that center of the coordinate system is at pinhole and Z axis is along viewing direction

$$
\mathbf{x}_{w}^{\prime}=R \mathbf{x}_{w}+\mathbf{t}
$$

- Perspective projection

$$
\begin{array}{rlr}
\mathbf{x}_{w}^{\prime} \equiv(X, Y, Z) & x=\frac{X}{Z} \\
{ }_{i m g}^{\prime} & \equiv(x, y) & y=\frac{Y}{Z}
\end{array}
$$

Putting everything together

- Change coordinate system so that center of the coordinate system is at pinhole and Z axis is along viewing direction

$$
\mathbf{x}_{w}^{\prime}=R \mathbf{x}_{w}+\mathbf{t}
$$

- Perspective projection

$$
\begin{array}{rlr}
\mathbf{x}_{w}^{\prime} \equiv(X, Y, Z) & x=\frac{X}{Z} \\
{ }_{i m g}^{\prime} & \equiv(x, y) & y=\frac{Y}{Z}
\end{array}
$$

The projection equation

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

- Is this equation linear?
- Can this equation be represented by a matrix multiplication?

Is projection linear?

$$
\begin{aligned}
X^{\prime}=a X+b & x^{\prime}=\frac{a X+b}{a Z+b} \\
Y^{\prime}=a Y+b & \\
Z^{\prime}=a Z+b & y^{\prime}=\frac{a Y+b}{a Z+b}
\end{aligned}
$$

Can projection be represented as a matrix multiplication?

Matrix multiplication $\left[\begin{array}{lll}a & b & c \\ p & q & r\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{l}a X+b Y+c Z \\ p X+q Y+r Z\end{array}\right]$

Perspective

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

Homogenous coordinates

- Cartesian coordinates : Each point represented by 2 coordinates (x, y)
- Homogenous coordinates : Each "point" represented by 3 coordinates (x, y, z), BUT:
- $(\lambda x, \lambda y, \lambda z) \equiv(x, y, z)$
- Mapping Cartesian to Homogenous :

$$
(x, y) \rightarrow(x, y, 1)
$$

- Mapping Homogenous to Cartesian :

$$
(x, y, z) \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right)
$$

Points at infinity

- 2D Points in homogenous coordinates: (x, y, z)
- What if $z=0$?
- Corresponding cartesian coordinates: $\left(\frac{x}{z}, \frac{y}{z}\right)=$?
- Suppose $x=5, y=1$
- $(5,1,1) \rightarrow\left(\frac{5}{1}, \frac{1}{1}\right)=(5,1)$
- $(5,1,0.1) \rightarrow\left(\frac{5}{0.1}, \frac{1}{0.1}\right)=(50,10)$
- $(5,1,0.01) \rightarrow\left(\frac{5}{0.01}, \frac{1}{0.01}\right)=(500,100)$
- $(5,1,0) \rightarrow$ point "at infinity " along the same direction

Homogenous coordinates

- In standard Cartesian coordinates
- 2D points : (x, y)
- 3D points : (x, y, z)
- In homogenous coordinates
- 2D points : $(x, y, 1)$
- 3D points: $(x, y, z, 1)$

Why homogenous coordinates?

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]} \\
\begin{array}{c}
\text { Homogenous } \\
\text { coordinates of } \\
\text { world point }
\end{array}
\end{gathered}
$$

Why homogenous coordinates?

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]} \\
P \overrightarrow{\mathbf{x}}_{w}=\overrightarrow{\mathbf{x}}_{i m g}
\end{gathered}
$$

- Perspective projection is matrix multiplication in homogenous coordinates!

Why homogenous coordinates?

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Translation is matrix multiplication in homogenous coordinates!

Homogenous coordinates

$$
\begin{aligned}
& {\left[\begin{array}{llll}
a & b & c & t_{x} \\
d & e & f & t_{y} \\
g & h & i & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=} {\left[\begin{array}{c}
a X+b Y+c Z+t_{x} \\
d X+e Y+f Z+t_{y} \\
g X+h Y+i Z+t_{z} \\
1
\end{array}\right] } \\
& {\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\left[\begin{array}{c}
M \mathbf{x}_{w}+\mathbf{t} \\
1
\end{array}\right] }
\end{aligned}
$$

Homogenous coordinates

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \longmapsto\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]
$$

Perspective projection in homogenous coordinates

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{ll}
R & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

More about matrix transformations

$$
\begin{aligned}
& {\left[\begin{array}{cc}
I & \mathbf{0}
\end{array}\right] 3 \times 4: \text { Perspective projection }} \\
& {\left[\begin{array}{rr}
I & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] 4 \times 4: \text { Translation }} \\
& {\left[\begin{array}{cr}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \begin{array}{l}
4 \times 4: \text { Affine transformation } \\
\\
\\
\\
\text { (linear transformation }+ \\
\text { translation) }
\end{array}}
\end{aligned}
$$

More about matrix transformations

$$
\left[\begin{array}{ll}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

$$
M^{T} M=I
$$

Euclidean

More about matrix transformations

$$
\begin{gathered}
{\left[\begin{array}{ll}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]} \\
M=s R \\
R^{T} R=I \\
\quad \text { Similarity } \\
\text { transformation }
\end{gathered}
$$

More about matrix transformations

$$
\begin{aligned}
& {\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]} \\
& M=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]
\end{aligned}
$$

Anisotropic scaling and translation

More about matrix transformations

$\left[\begin{array}{cc}M & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$

General affine transformation

Matrix transformations in 2D

Perspective transformation till now

$$
\overrightarrow{\boldsymbol{x}}_{i m g} \equiv\left[\begin{array}{ll}
R & \boldsymbol{t}
\end{array}\right] \overrightarrow{\boldsymbol{x}}_{w}
$$

-What about image coordinate system?

- Origin not in center but on top left
- Units are different (dependent on resolution)
- Assume a general homogenous transformation K
- If only translation and scale, then $K \equiv\left[\begin{array}{ccc}s_{x} & 0 & u \\ 0 & s_{y} & v \\ 0 & 0 & 1\end{array}\right]$
- Final equation:

$$
\overrightarrow{\boldsymbol{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \boldsymbol{t}
\end{array}\right] \overrightarrow{\boldsymbol{x}}_{w}
$$

