Datasets for recognition

Why talk about datasets

- Datasets serve two functions in recognition:
 - Training
 - Evaluation
- ML will work best close to the training dataset
- Our understanding of performance comes from the evaluation datasets

What we want

- Evaluation datasets:
 - Should match real world testing distribution
 - Must be carefully and completely annotated
 - Can be small
- Training datasets:
 - Should match real world testing distribution
 - Must be large
 - Can be unannotated or partially annotated

Building a dataset

- Step 1: Collect images
- Step 2: Annotate them
- Profit!

Building a dataset

• Suppose we want general category recognition

Building a dataset – Curated approach

- Choose a set of categories
- Collect images for each

Choosing categories

- Space of categories immense
- How broad?
 - Animals? Vehicles? Household objects?...
- How granular?
 - Bird vs sparrow
 - Dog vs golden retriever
 - People often use inconsistently granular labels
- E.g., ImageNet uses wordnet
- Taxonomies typically arbitrary and use-dependent

Choosing images

- Pick a set of categories
- Search for images of those categories
- Doesn't work because of
 - Posed images ("Iconic images")
 - Use of recognition models inside search
 - Will not give in-the-wild content

Choosing images

- Pick a set of categories
- Search for images of those categories
- Doesn't work because of
 - Posed images ("Iconic images")
 - Use of recognition models inside search
 - Will not give in-the-wild content

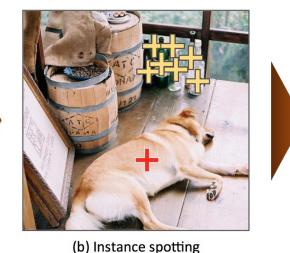
The curated approach

- Pick a set of categories
- Pick intelligent search terms that will yield in-the-wild content
 - PASCAL VOC: search for "party", "birthday" etc.
 - COCO: search for pairs of classes: "dog"+"bicycle" etc.

The curated approach - labeling

- Usually an image will have multiple classes
- Will have to ask annotators to label every class in the image exhaustively
- A very hard annotation problem

(a) Category labeling



(c) Instance segmentation

Fig. 3: Our annotation pipeline is split into 3 primary tasks: (a) labeling the categories present in the image ($\S4.1$), (b) locating and marking all instances of the labeled categories ($\S4.2$), and (c) segmenting each object instance ($\S4.3$).

The curated approach

- Many categories will be relatively rare
 - Performance on these categories will suffer
- Need special targetted collection efforts to avoid this

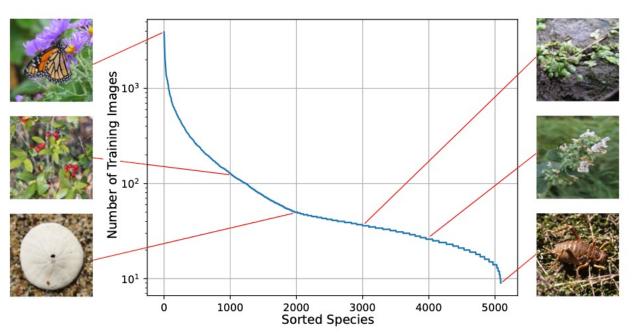
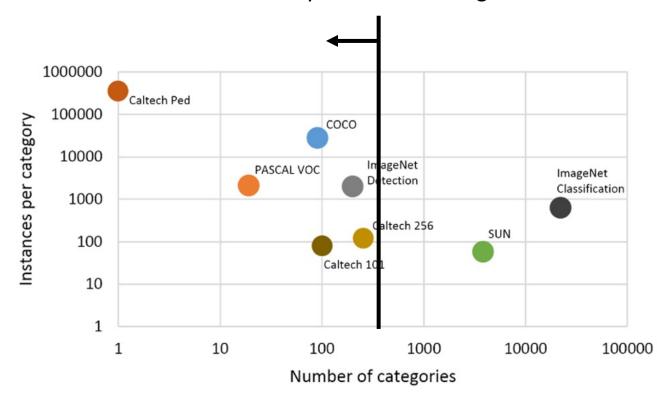


Figure 2. Distribution of training images per species. iNat2017 contains a large imbalance between classes, where the top 1% most populated classes contain over 16% of training images.

Problems with curated datasets

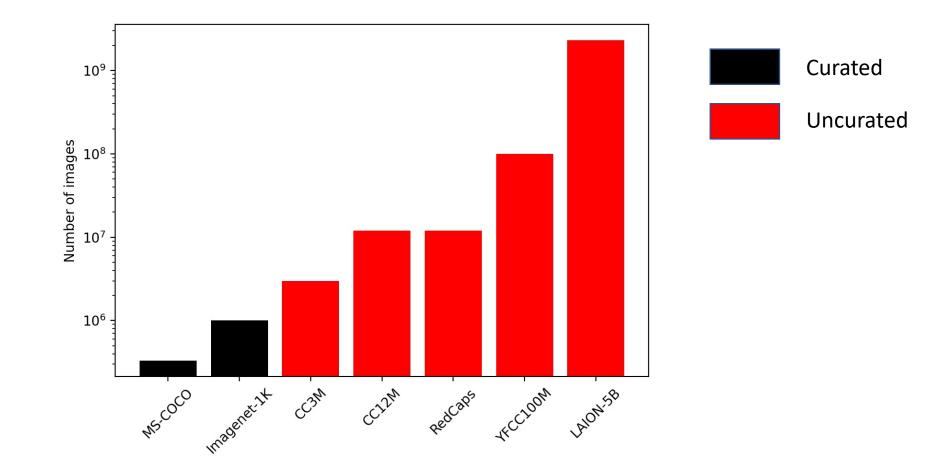
Curated datasets today have <= 1m images and <500 classes



The uncurated approach – data collection

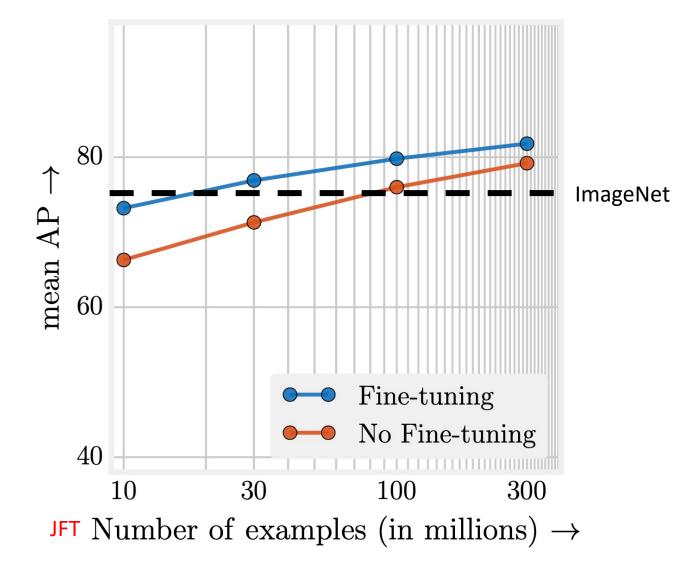
- Crawl the web for images
- Label / annotate them
 - Annotations are typically "open-world" not fixed categories
 - E.g., captions, alt-text
 - Sometimes come with "grounding" = bounding boxes

Uncurated data



Sun, Chen, et al. "Revisiting unreasonable effectiveness of data in deep learning era." *Proceedings of the IEEE international conference on computer vision*. 2017.

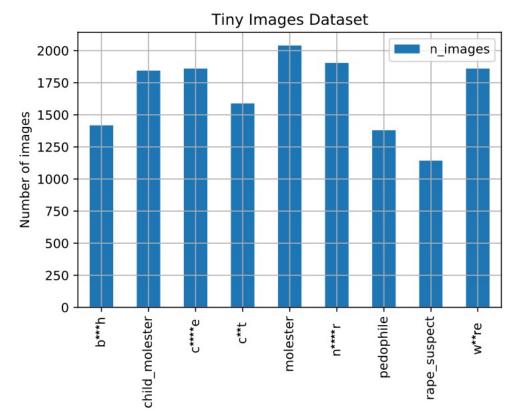
Impact of size of data



- Images can be
 - NSFW

Table 1: Large scale image datasets containing peo	ple's images
--	--------------

Dataset	Number of images (in millions)	Number of categories (in thousands)	Number of consensual images
JFT-300M ([54])	300+	18	0
Open Images ([63])	9	20	0
Tiny-Images ([103])	79	76	0
Tencent-ML ([113])	18	11	0
ImageNet-(21k,11k,11k) ([90])	(14, 12, 1)	(22, 11, 1)	0



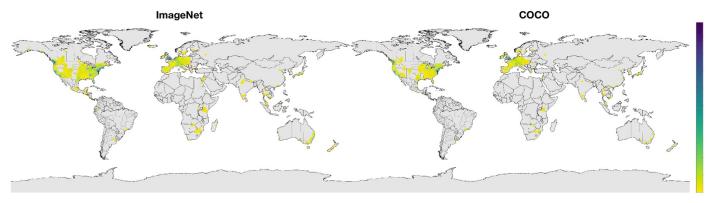
Birhane, Abeba, and Vinay Uday Prabhu. "Large image datasets: A pyrrhic win for computer vision?." *2021 IEEE Winter Conference on Applications of Computer Vision (WACV)*. IEEE, 2021.

- Images can be
 - NSFW
- Filtering?
 - At scale, can only be done by automatic techniques...
 - => Biased, incorrect filtering
 - "Curation debt"

Butters OW, Wilson RC, Burton PR. Recognizing, reporting and reducing the data curation debt of cohort studies. Int J Epidemiol. 2020 Aug 1;49(4):1067-1074. doi: 10.1093/ije/dyaa087. PMID: 32617581; PMCID: PMC7660145.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT '21). Association for Computing Machinery, New York, NY, USA, 610–623. https://doi.org/10.1145/3442188.3445922

• Datasets are biased by what is there on the internet



OpenImages

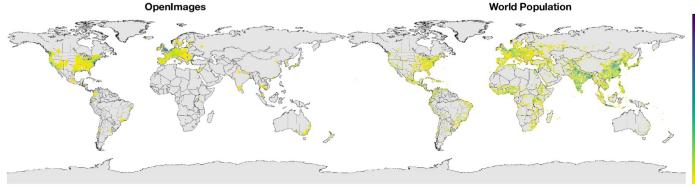


Figure 6: Density maps showing the geographical distribution of images in the ImageNet (top-left), COCO (top-right), and OpenImages (bottom-left) datasets. A world population density map is shown for reference (bottom-right).

De Vries, Terrance, et al. "Does object recognition work for everyone?." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2019.

Ground truth: Soap

Azure: food, cheese, bread, cake, sandwich Clarifai: food, wood, cooking, delicious, healthy Google: food, dish, cuisine, comfort food, spam Amazon: food, confectionary, sweets, burger Watson: food, food product, turmeric, seasoning Tencent: food, dish, matter, fast food, nutriment

UK, 1890 \$/month

Azure: toilet, design, art, sink

Clarifai: people, faucet, healthcare, lavatory, wash closet Google: product, liquid, water, fluid, bathroom accessory Amazon: sink, indoors, bottle, sink faucet

Watson: gas tank, storage tank, toiletry, dispenser, soap dispenser Tencent: lotion, toiletry, soap dispenser, dispenser, after shave

Clarifai: food, wood, cooking, delicious, healthy

Google: food, dish, cuisine, comfort food, spam Amazon: food, confectionary, sweets, burger

Watson: food, food product, turmeric, seasoning

Tencent: food, dish, matter, fast food, nutriment

Ground truth: Soap

Azure: food, cheese, bread, cake, sandwich

Nepal, 288 \$/month

Ground truth: Soap

UK, 1890 \$/month

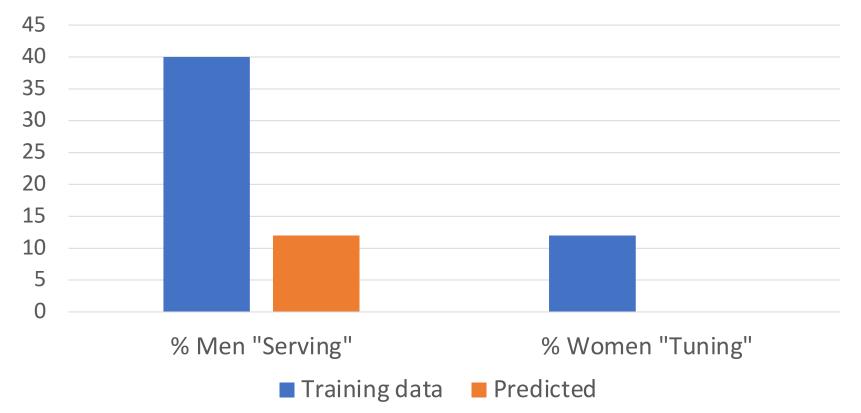
Azure: toilet, design, art, sink Clarifai: people, faucet, healthcare, lavatory, wash closet Google: product, liquid, water, fluid, bathroom accessory

Amazon: sink, indoors, bottle, sink faucet Watson: gas tank, storage tank, toiletry, dispenser, soap dispenser Tencent: lotion, toiletry, soap dispenser, dispenser, after shave

De Vries, Terrance, et al. "Does object recognition work for everyone?." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2019.

Side note: ML algorithms *amplify* bias

Bias amplification in role labeling



Zhao, Jieyu, et al. "Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints." *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*. 2017.

Challenges with uncurated data - Generalization

- What has the model seen and not seen?
 - Generally, model accuracy higher on data it has seen
 - Even if it hasn't seen labels
- Challenging to measure generalization for large datasets
- Impossible if dataset is closed

"Uncurated"

- Internet data is not uncurated
- Photographer's bias
- "Interesting-ness"
- For some domains, true uncurated data exists
 - Self-driving cars
 - Satellite imagery