
Image classification

Image classification

• Given an image, produce a label
• Label can be:
• 0/1 or yes/no: Binary classification
• one-of-k: Multiclass classification
• 0/1 for each of k concepts: Multilabel classification

MNIST

• 2D
• 10 classes
• 6000 examples per class

1990’s

Caltech 101

• 101 classes
• 10 classes
• 30 examples per class
• Strong category-specific biases
• Clean images

1990’s

MNIST

2004

PASCAL VOC

• 20 classes
• ~500 examples per class
• Clutter, occlusion, natural

scenes

1990’s

MNIST

2004

Caltech 101

2007-2012

ImageNet

• 1000 classes
• ~1000 examples per class
• Mix of cluttered and clean

images

1990’s

MNIST

2004

Caltech 101

2007-2013

PASCAL VOC

2013-2017

Why is recognition hard?

Pose/articulation

Scale

Lighting

Clutter/

occlusion

Learning

• Key idea: teach computer visual concepts by providing examples

X :Images

Y :Labels

D :Distribution over X ⇥ Y

S = {(xi, yi) ⇠ D, i = 1, . . . , n}Training
Set

Example

• Binary classifier “Dog” or ”not Dog”
• Labels: {0, 1}
• Training set

, 1), , 1), , 0) , … }{(((

Learning

• Key idea: teach computer visual concepts by providing examples

• Want to be able to estimate label 𝑦 for new images 𝑥
• Want to give score 𝑠(𝑦, 𝑥) for each possible label 𝑦, then pick highest scoring
• Want to estimate 𝑦 𝑥
• Want to estimate 𝑃(𝑦|𝑥), then pick most likely

S = {(xi, yi) ⇠ D, i = 1, . . . , n}

Choosing a model class

• Will estimate a probability P(y | x)
• Any function that takes x as input and outputs probability distribution
• where 𝐶! is a probability distribution over d classes
• Very large set of possibilities for h

• Constrain choice: Choose a family of possible functions 𝐻
• Hypothesis class

h : X ! C |Y|

Hypothesis class I: Classical models

• Choose h to be a linear classifier over some feature space
• First extract features: 𝒛 = 𝜙 𝑥
• 𝜙 is a fixed, hand-crafted function that converts images into features useful

for recognition: 𝜙:𝒳 → ℝ!

• Next multiply by a weight matrix to produce class scores: 𝒔 = 𝑊𝒛
• 𝑊 is unknown a priori

• Next normalize scores to a probability
• 𝑃 𝑦 = 𝑘 𝑥 ∝ 𝑒"!
• “Softmax”

Hypothesis class I: Classical models

• ℎ 𝑥;𝑊 = softmax(𝑊𝜙 𝑥)
• For different settings of W, get different hypotheses
• Hypothesis class 𝐻 = ℎ ⋅;𝑊 ;𝑊 ∈ ℝ|𝒴| × $

• W are parameters: index hypotheses in hypothesis class

𝑓! 𝑥
= 𝜙(𝑥)

𝑓" 𝑧
= 𝑊𝑧

𝑓# 𝑠
= softmax(𝑠)

Choice of feature extractor?

• SIFT, HOG, GIST, BOW….
• The rest of the pipeline is very simple: linear function + softmax
• So heavy lifting must be done by feature extractor
• But how do we design feature extractor?

SIFT

• SIFT itself a series of simple, fixed steps
• Make some of them parametric?

Compute
gradients

Compute
magnitude

and
orientation

Quantize
and bin Histogram

Hypothesis class 2: Multilayer perceptrons

• Key idea: build complex functions by composing many simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) =
max(x,0)

g(x) =
max(x,0)

𝑓# 𝑠
= softmax(𝑠)

General recipe

• Fix hypothesis class
• ℎ3 𝑥 = softmax 𝑓4 𝑓5 𝑔 𝑓6 x,w6 , w5 , w4
• ℎ3 𝑥 = softmax 𝑊𝜙 𝑥

• Define loss function
• 𝐿 ℎ3 𝑥7 , 𝑦7 = −log 𝑝8"(𝑥7)

• Minimize average (or total) loss on the training set

• How do we minimize?
• Why should this work?

min
w

1

n

nX

i=1

L(hw(xi), yi)

Training: Choosing the best hypothesis

• Need to minimize an objective function.
• In general, optimization problem.
• If L is differentiable and h is differentiable: can do gradient descent

min
w

1

n

nX

i=1

L(hw(xi), yi)

Training = Optimization

• Simple solution: gradient descent

min
w

f(w)

w(t+1) = w(t) � ↵rwf(w(t))

Stochastic gradient descent
f(w) =

1

n

X

i

L(hw(xi), yi)

rwf(w) =
1

n

X

i

rwL(hw(xi), yi)

rwf(w) =< rwL(hw(xi), yi) >

rwf(w) ⇡ 1

|B|

|B|X

k=1

rwL(hw(xik), yik)

rwf(w) ⇡ rwL(hw(xi), yi)

Objective function

Gradient

Gradient = average of per example
gradients

Stochastic gradient descent using single
examples

Stochastic gradient descent using
minibatch

Stochastic gradient descent

• Randomly sample small subset of examples
• Compute gradient on small subset
• Unbiased estimate of true gradient

• Take step along estimated gradient

Computing derivatives
rwf(w) ⇡ rwL(hw(xi), yi)

• How do we compute gradient?
• Composition of functions: use chain rule

z1 = f1(x,w1)

z2 = f2(z1,w2)

z3 = f3(z2,w3)

l = L(z3, y) g3 =
@l

@z3

g2 =
@l

@z2
= g3

@z3
@z2

g1 =
@l

@z1
= g2

@z2
@z1

@l

@w1
= g1

@z1
@w1

@l

@w2
= g2

@z2
@w2

@l

@w3
= g3

@z3
@w3

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

Risk

• Given:
• Distribution
• A hypothesis
• Loss function L

• We are interested in Expected Risk:

• Given training set S, and a particular hypothesis h, Empirical Risk:

D
h 2 H

R(h) = E(x,y)⇠DL(h(x), y)

R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Risk

• By central limit theorem,

• Variance proportional to 1/n

• For randomly chosen h, empirical risk is an unbiased estimator of
expected risk

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

ES⇠DnR̂(S, h) = R(h)

Risk

• Empirical risk unbiased estimate of expected risk
• Want to minimize expected risk
• Idea: Minimize empirical risk instead
• This is the Empirical Risk Minimization Principle

h⇤ = arg min
h2H

R̂(S, h)

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Generalization

R(h) = R̂(S, h) + (R(h)� R̂(S, h))

Training
error

Generalization
error

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Overfitting

• We are minimizing training error
• Empirical risk of chosen hypothesis no longer unbiased estimate:
• We chose hypothesis based on S
• Might have chosen h for which S is a special case

• Overfitting:
• Minimize training error, but generalization error increases

Controlling generalization error

• Variance of empirical risk inversely proportional to size of S
• Choose very large S!

• Larger the hypothesis class H, Higher the chance of hitting bad
hypotheses with low training error and high generalization error
• Choose small H!

• For many models, can bound generalization error using some
property of parameters
• Regularize during optimization!
• Eg. L2 regularization

Controlling generalization error

• How do we know we are overfitting?
• Use a held-out “validation set”
• To be an unbiased sample, must be completely unseen

Putting it all together

• Want model with least expected risk = expected loss
• But expected risk hard to evaluate
• Empirical Risk Minimization: minimize empirical risk in training set
• Might end up picking special case: overfitting
• Avoid overfitting by:
• Constructing large training sets
• Reducing size of model class
• Regularization

Putting it all together

• Collect training set and validation set
• Pick hypothesis class
• Pick loss function
• Minimize empirical risk (+ regularization)
• Measure performance on held-out validation set
• Profit!

Loss functions and hypothesis classes

Multilayer perceptrons

• Key idea: build complex functions by composing simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) =
max(x,0)

g(x) =
max(x,0)

Multilayer perceptrons

• Key idea: build complex functions by composing simple functions
• Caveat: simple functions must include non-linearities
• W(U(Vx)) = (WUV)x

Reducing capacity

256

256

65K

Reducing capacity

65KW

65K

65K

Idea 1: local connectivity

• Inputs and outputs are feature maps
• Pixels only related to nearby pixels

Idea 2: Translation invariance

• Pixels only related to nearby pixels

Local connectivity + translation invariance =
convolution

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Local connectivity + translation invariance =
convolution

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Local connectivity + translation invariance =
convolution

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Feature map

Convolution as a primitive

w

h

c

w

h

c’

Convolution

c

c’

Invariance to distortions

Invariance to distortions

Invariance to distortions: Pooling

…

Invariance to distortions: Subsampling

Convolution subsampling convolution

Convolution subsampling convolution

• Convolution in earlier steps detects more local patterns less resilient
to distortion
• Convolution in later steps detects more global patterns more resilient

to distortion
• Subsampling allows capture of larger, more invariant patterns

Convolution with subsampling

• Subsampling = reducing resolution by dropping rows and columns
• Can be done with strided convolution
• Stride of k means output pixel every k input pixels

• Typically done without anti-aliasing, though anti-aliasing helps1

1https://richzhang.github.io/antialiased-cnns/

Convolution with subsampling

Invariance to deformations

Effect of subsampling

• Same sized filters captures larger neighborhoods on lower resolution
features
• Magnitude of translations / deformations reduce with lower

resolution
• Convolution in earlier steps detects more local patterns less resilient

to deformations / translations
• Convolution in later steps detects more global patterns more resilient

to deformations / translations
• Subsampling allows capture of larger, more invariant patterns

Pooling

• Similar to convolution, but take max or average across window for
every channel
• No learnable parameters

w

h

c

Max / average pooling

w

h

c

Global Average Pooling

• Special case: take average across entire input space for every channel
• Useful for converting feature maps to vector of image features

w

h

c

Global average pooling

c

Recall: Empirical Risk Minimization

Neural network

min
✓

1

N

NX

i=1

L(h(xi;✓), yi)

✓(t+1) = ✓(t) � �
1

N

NX

i=1

rL(h(xi;✓), yi)

Gradient descent update

Computing the gradient of the loss

rL(h(x;✓), y)

z = h(x;✓)

r✓L(z, y) =
@L(z, y)

@z

@z

@✓

Learning with function compositions

• 𝐹 = 𝑓% ∘ 𝑓& ∘ 𝑓' ∘ 𝑓(∘ 𝑓)
• Suppose 𝑓* has learnable parameters 𝑤* , takes input 𝑧*+) and

produces output 𝑧*
• Need to compute ,-

,.!
. How?

• Key idea: recurrence
• If we know 9:

9;"
, then chain rule gives: 9:

9;"
9;"
93"

, second term only requires each
function be differentiable
• Also 9:

9;"
= 9:
9;"#$

9;"#$
9;"

Learning with function compositions

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

Backpropagation for a sequence of functions

zi = fi(zi�1, wi)

z0 = x
z = zn

@z

@zi
=

@z

@zi+1

@zi+1

@zi

Previous
term

@z

@wi
=

@z

@zi

@zi
@wi

Function
derivative

Backpropagation for a sequence of functions

• Assume we can compute partial derivatives of each function

• Use g(zi) to store gradient of z w.r.t zi, g(wi) for wi

• Calculate gi by iterating backwards

• Use gi to compute gradient of parameters

zi = fi(zi�1, wi) z0 = x z = zn

@zi
@zi�1

=
@fi(zi�1, wi)

@zi�1

@zi
@wi

=
@fi(zi�1, wi)

@wi

g(zn) =
@z

@zn
= 1 g(zi�1) =

@z

@zi

@zi
@zi�1

= g(zi)
@zi

@zi�1

g(wi) =
@z

@zi

@zi
@wi

= g(zi)
@zi
@wi

Backpropagation for a sequence of functions

• Each “function” has a “forward” and “backward” module
• Forward module for fi
• takes zi-1 and weight wi as input
• produces zi as output

• Backward module for fi
• takes g(zi) as input
• produces g(zi-1) and g(wi) as output

g(wi) = g(zi)
@zi
@wi

g(zi�1) = g(zi)
@zi

@zi�1

Backpropagation for a sequence of functions

fi

zi-
1

zi

wi

Backpropagation for a sequence of functions

fi

g(zi-
1)

g(zi)

g(wi)

Chain rule for vectors

@a

@b
=

@a

@c

@c

@b

@ai
@bj

=
X

k

@ai
@ck

@ck
@bj

@a

@b
(i, j) =

@ai
@bj

Jacobian

@a

@b
=

@a

@c

@c

@b

Loss as a function

conv

filters

subsample subsampleconv linear

filters weights

loss

label

Beyond sequences: computation graphs

• Arbitrary graphs of functions
• No distinction between intermediate outputs and parameters

f

h

g k

l

x

y

w

u

z

Computation graph - Functions

• Each node implements two functions
• A “forward”

• Computes output given input
• A “backward”

• Computes derivative of z w.r.t input, given derivative of z w.r.t output

Computation graphs

fi

a

d

c

b

Computation graphs

fi
@z

@d

@z

@a

@z

@b

@z

@c

Computation graphs

fi

a

d

c

b

Computation graphs

fi
@z

@d

@z

@a

@z

@b

@z

@c

Exploring convnet
architectures

Deeper is better

0

5

10

15

20

25

30

2010 2011 2012 2013 2014

Challenge winner's accuracy

7 layers

16 layers

Deeper is better

0

5

10

15

20

25

30

2010 2011 2012 2013 2014

Challenge winner's accuracy

Alexnet

VGG16

The VGG pattern

• Every convolution is 3x3, padded by 1
• Every convolution followed by ReLU
• ConvNet is divided into “stages”
• Layers within a stage: no subsampling
• Subsampling by 2 at the end of each stage

• Layers within stage have same number of channels
• Every subsampling à double the number of channels

Challenges in training: exploding / vanishing
gradients
• Vanishing / exploding gradients

• If each term is (much) greater than 1 à explosion of gradients
• If each term is (much) less than 1 à vanishing gradients

@z

@zi
=

@z

@zn�1

@zn�1

@zn�2
. . .

@zi+1

@zi

Challenges in training: dependence on init

Solutions

• Careful init

• Batch normalization

• Residual connections

Careful initialization

• Key idea: want variance to remain approx. constant
• Variance increases in backward pass => exploding gradient
• Variance decreases in backward pass => vanishing gradient

• “MSRA initialization”
• weights = Gaussian with 0 mean and variance = 2/(k*k*d)

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. K. He, X. Zhang, S. Ren, J. Sun

Residual connections

• In general, gradients tend to vanish
• Key idea: allow gradients to flow unimpeded

@z

@zi
=

@z

@zn�1

@zn�1

@zn�2
. . .

@zi+1

@zi

zi+1 = fi+1(zi, wi+1)
@zi+1

@zi
=

@fi+1(zi, wi+1)

@zi

Residual connections

• In general, gradients tend to vanish
• Key idea: allow gradients to flow unimpeded

@z

@zi
=

@z

@zn�1

@zn�1

@zn�2
. . .

@zi+1

@zi

@zi+1

@zi
=

@gi+1(zi, wi+1)

@zi
+ Izi+1 = gi+1(zi, wi+1) + zi

Residual connections

• Assumes all zi have the same size
• True within a stage
• Across stages?
• Doubling of feature channels
• Subsampling

• Increase channels by 1x1 convolution
• Decrease spatial resolution by subsampling

zi+1 = gi+1(zi, wi+1) + subsample(Wzi)

A residual block

• Instead of single layers, have residual connections over block

Conv BN ReLU Conv BN

Bottleneck blocks

• Problem: When channels increases, 3x3 convolutions introduce many
parameters
• 3×3×𝑐2

• Key idea: use 1x1 to project to lower dimensionality, do convolution,
then come back
• 𝑐×𝑑 + 3×3×𝑑2 + 𝑑×𝑐

The ResNet pattern

• Decrease resolution substantially in first layer
• Reduces memory consumption due to intermediate outputs

• Divide into stages
• maintain resolution, channels in each stage
• halve resolution, double channels between stages

• Divide each stage into residual blocks
• At the end, compute average value of each channel to feed linear

classifier

Putting it all together - Residual networks

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2015

Challenge winner's accuracy

0

50

100

150

200

DenseNets

