Image classification

Image classification

- Given an image, produce a label
- Label can be:
- 0/1 or yes/no: Binary classification
- one-of-k: Multiclass classification
- 0/1 for each of k concepts: Multilabel classification

MNIST

-2D

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	4	9	9

- 10 classes
- 6000 examples per class

1990's

Caltech 101

MNIST

- 101 classes
- 10 classes
- 30 examples per class
- Strong category-specific biases
- Clean images

PASCAL VOC

- 20 classes
- ~500 examples per class
- Clutter, occlusion, natural scenes

ImageNet

- 1000 classes
- ~1000 examples per class
- Mix of cluttered and clean images

Why is recognition hard?

Learning

- Key idea: teach computer visual concepts by providing examples

Example

- Binary classifier "Dog" or "not Dog"
- Labels: $\{0,1\}$
- Training set

Learning

- Key idea: teach computer visual concepts by providing examples

$$
S=\left\{\left(x_{i}, y_{i}\right) \sim \mathcal{D}, i=1, \ldots, n\right\}
$$

- Want to be able to estimate label y for new images x
- Want to give score $s(y, x)$ for each possible label y, then pick highest scoring
- Want to estimate $y(x)$
- Want to estimate $P(y \mid x)$, then pick most likely

Choosing a model class

- Will estimate a probability $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$
- Any function that takes x as input and outputs probability distribution
- $h: \mathcal{X} \rightarrow C^{|\mathcal{Y}|} \quad$ where C^{d} is a probability distribution over d classes
- Very large set of possibilities for h
- Constrain choice: Choose a family of possible functions H
- Hypothesis class

Hypothesis class I: Classical models

- Choose h to be a linear classifier over some feature space
- First extract features: $\mathbf{Z}=\phi(x)$
- ϕ is a fixed, hand-crafted function that converts images into features useful for recognition: $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d}$
- Next multiply by a weight matrix to produce class scores: $\boldsymbol{s}=W \boldsymbol{Z}$
- W is unknown a priori
- Next normalize scores to a probability
- $P(y=k \mid x) \propto e^{s_{k}}$
- "Softmax"

Hypothesis class I: Classical models

- $h(x ; W)=\operatorname{softmax}(W \phi(x))$
- For different settings of W, get different hypotheses
- Hypothesis class $H=\left\{h(\cdot ; W) ; W \in \mathbb{R}^{|\mathcal{Y}| \times d}\right\}$
- W are parameters: index hypotheses in hypothesis class

Choice of feature extractor?

- SIFT, HOG, GIST, BOW....
- The rest of the pipeline is very simple: linear function + softmax
- So heavy lifting must be done by feature extractor
- But how do we design feature extractor?

SIFT

- SIFT itself a series of simple, fixed steps
- Make some of them parametric?

Hypothesis class 2: Multilayer perceptrons

- Key idea: build complex functions by composing many simple functions

General recipe

- Fix hypothesis class
- $h_{w}(x)=\operatorname{softmax}\left(f_{3}\left(f_{2}\left(g\left(f_{1}\left(\mathrm{x}, \mathrm{w}_{1}\right)\right), \mathrm{w}_{2}\right), \mathrm{w}_{3}\right)\right)$
- $h_{w}(x)=\operatorname{softmax}(W \phi(x))$
- Define loss function
- $L\left(h_{w}\left(x_{i}\right), y_{i}\right)=-\log p_{y_{i}}\left(x_{i}\right)$
- Minimize average (or total) loss on the training set

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} L\left(h_{\mathbf{w}}\left(x_{i}\right), y_{i}\right)
$$

- How do we minimize?
- Why should this work?

Training: Choosing the best hypothesis

- Need to minimize an objective function.
- In general, optimization problem.
- If L is differentiable and h is differentiable: can do gradient descent

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} L\left(h_{\mathbf{w}}\left(x_{i}\right), y_{i}\right)
$$

Training = Optimization

- Simple solution: gradient descent

$$
\begin{gathered}
\min _{\mathbf{w}} f(\mathbf{w}) \\
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\alpha \nabla_{\mathbf{w}} f\left(\mathbf{w}^{(t)}\right)
\end{gathered}
$$

Stochastic gradient descent

$$
\begin{array}{cl}
f(\mathbf{w})=\frac{1}{n} \sum_{i} L\left(h_{\mathbf{w}}\left(x_{i}\right), y_{i}\right) & \text { Objective function } \\
\nabla_{\mathbf{w}} f(\mathbf{w})=\frac{1}{n} \sum_{i} \nabla_{\mathbf{w}} L\left(h_{\mathbf{w}}\left(x_{i}\right), y_{i}\right) & \text { Gradient }
\end{array}
$$

$$
\nabla_{\mathbf{w}} f(\mathbf{w})=<\nabla_{\mathbf{w}} L\left(h_{\mathbf{w}}\left(x_{i}\right), y_{i}\right)>
$$

$$
\nabla_{\mathbf{w}} f(\mathbf{w}) \approx \nabla_{\mathbf{w}} L\left(h_{\mathbf{w}}\left(x_{i}\right), y_{i}\right)
$$

$$
\nabla_{\mathbf{w}} f(\mathbf{w}) \approx \frac{1}{|B|} \sum_{k=1}^{|B|} \nabla_{\mathbf{w}} L\left(h_{\mathbf{w}}\left(x_{i_{k}}\right), y_{i_{k}}\right)
$$

Gradient = average of per example gradients

Stochastic gradient descent using single examples

Stochastic gradient descent using minibatch

Stochastic gradient descent

- Randomly sample small subset of examples
- Compute gradient on small subset
- Unbiased estimate of true gradient
- Take step along estimated gradient

Computing derivatives

$$
\nabla_{\mathbf{w}} f(\mathbf{w}) \approx \nabla_{\mathbf{w}} L\left(h_{\mathbf{w}}\left(x_{i}\right), y_{i}\right)
$$

- How do we compute gradient?
- Composition of functions: use chain rule

$$
\begin{array}{llr}
z_{1}=f_{1}\left(x, \mathbf{w}_{1}\right) & g_{1}=\frac{\partial l}{\partial z_{1}}=g_{2} \frac{\partial z_{2}}{\partial z_{1}} & \frac{\partial l}{\partial \mathbf{w}_{1}}=g_{1} \frac{\partial z_{1}}{\partial \mathbf{w}_{1}} \\
z_{2}=f_{2}\left(z_{1}, \mathbf{w}_{2}\right) & g_{2}=\frac{\partial l}{\partial z_{2}}=g_{3} \frac{\partial z_{3}}{\partial z_{2}} & \frac{\partial l}{\partial \mathbf{w}_{2}}=g_{2} \frac{\partial z_{2}}{\partial \mathbf{w}_{2}} \\
z_{3}=f_{3}\left(z_{2}, \mathbf{w}_{3}\right) & g_{3}=\frac{\partial l}{\partial z_{3}} & \frac{\partial l}{\partial \mathbf{w}_{3}}=g_{3} \frac{\partial z_{3}}{\partial \mathbf{w}_{3}}
\end{array}
$$

The gradient of convnets

Backppopagation

Risk

- Given:
- Distribution \mathcal{D}
- A hypothesis $h \in H$
- Loss function L
- We are interested in Expected Risk:

$$
R(h)=\mathbb{E}_{(x, y) \sim \mathcal{D}} L(h(x), y)
$$

- Given training set S , and a particular hypothesis h, Empirical Risk:

$$
\hat{R}(S, h)=\frac{1}{|S|} \sum_{(x, y) \in S} L(h(x), y)
$$

Risk

$\left.R(h)=\mathbb{E}_{(x, y) \sim \mathcal{D}} L(h(x), y) \quad \hat{R}(S, h)=\frac{1}{|S|} \sum_{(x, y) \in S} L(h(x), y)\right)$

- By central limit theorem,

$$
\mathbb{E}_{S \sim \mathcal{D}^{n}} \hat{R}(S, h)=R(h)
$$

- Variance proportional to $1 / n$
- For randomly chosen h , empirical risk is an unbiased estimator of expected risk

Risk

- Empirical risk unbiased estimate of expected risk
- Want to minimize expected risk
- Idea: Minimize empirical risk instead
- This is the Empirical Risk Minimization Principle

$$
R(h)=\mathbb{E}_{(x, y) \sim \mathcal{D}} L(h(x), y) \quad \hat{R}(S, h)=\frac{1}{|S|} \sum_{(x, y) \in S} L(h(x), y)
$$

$$
h^{*}=\arg \min _{h \in H} \hat{R}(S, h)
$$

Generalization

$$
\begin{array}{cc}
R(h)=\mathbb{E}_{(x, y) \sim \mathcal{D}} L(h(x), y) \quad \hat{R}(S, h)=\frac{1}{|S|} \sum_{(x, y) \in S} L(h(x), y) \\
R(h)=\hat{R}(S, h)+(R(h)-\hat{R}(S, h)) \\
\text { Training } & \begin{array}{c}
\text { Generalization } \\
\text { error } \\
\text { error }
\end{array}
\end{array}
$$

Overfitting

- We are minimizing training error
- Empirical risk of chosen hypothesis no longer unbiased estimate:
- We chose hypothesis based on S
- Might have chosen h for which S is a special case
- Overfitting:
- Minimize training error, but generalization error increases

Controlling generalization error

- Variance of empirical risk inversely proportional to size of S
- Choose very large S!
- Larger the hypothesis class H , Higher the chance of hitting bad hypotheses with low training error and high generalization error
- Choose small H!
- For many models, can bound generalization error using some property of parameters
- Regularize during optimization!
- Eg. L2 regularization

Controlling generalization error

- How do we know we are overfitting?
- Use a held-out "validation set"
- To be an unbiased sample, must be completely unseen

Putting it all together

- Want model with least expected risk = expected loss
- But expected risk hard to evaluate
- Empirical Risk Minimization: minimize empirical risk in training set
- Might end up picking special case: overfitting
- Avoid overfitting by:
- Constructing large training sets
- Reducing size of model class
- Regularization

Putting it all together

- Collect training set and validation set
- Pick hypothesis class
- Pick loss function
- Minimize empirical risk (+ regularization)
- Measure performance on held-out validation set
- Profit!

Loss functions and hypothesis classes

Loss function	Problem	Range of h	\mathcal{Y}	Formula
Log loss	Binary Classification	\mathbb{R}	$\{0,1\}$	$\log \left(1+e^{-y h(x)}\right)$
Negative log likelihood	Multiclass classification	$[0,1]^{k}$	$\{1, \ldots, k\}$	$-\log h_{y}(x)$
Hinge loss	Binary Classification	\mathbb{R}	$\{0,1\}$	$\max (0,1-y h(x))$
MSE	Regression	\mathbb{R}	\mathbb{R}	$(y-h(x))^{2}$

Multilayer perceptrons

- Key idea: build complex functions by composing simple functions

Multilayer perceptrons

- Key idea: build complex functions by composing simple functions
- Caveat: simple functions must include non-linearities
- $W(U(V x))=(W U V) x$

Reducing capacity

Reducing capacity

Idea 1: local connectivity

- Inputs and outputs are feature maps
- Pixels only related to nearby pixels

Idea 2: Translation invariance

- Pixels only related to nearby pixels

Local connectivity + translation invariance = convolution

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Local connectivity + translation invariance = convolution

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Local connectivity + translation invariance $=$ convolution

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Feature map

Convolution as a primitive

Invariance to distortions

Invariance to distortions

Image gradients
Keypoint descriptor

Invariance to distortions: Pooling

Invariance to distortions: Subsampling

Convolution subsampling convolution

Convolution subsampling convolution

- Convolution in earlier steps detects more local patterns less resilient to distortion
- Convolution in later steps detects more global patterns more resilient to distortion
- Subsampling allows capture of larger, more invariant patterns

Convolution with subsampling

- Subsampling = reducing resolution by dropping rows and columns
- Can be done with strided convolution
- Stride of k means output pixel every k input pixels
- Typically done without anti-aliasing, though anti-aliasing helps ${ }^{1}$

Convolution with subsampling

Invariance to deformations

Effect of subsampling

- Same sized filters captures larger neighborhoods on lower resolution features
- Magnitude of translations / deformations reduce with lower resolution
- Convolution in earlier steps detects more local patterns less resilient to deformations / translations
- Convolution in later steps detects more global patterns more resilient to deformations / translations
- Subsampling allows capture of larger, more invariant patterns

Pooling

- Similar to convolution, but take max or average across window for every channel
- No learnable parameters

Global Average Pooling

- Special case: take average across entire input space for every channel
- Useful for converting feature maps to vector of image features

Recall: Empirical Risk Minimization

$$
\min _{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} L\left(h\left(x_{i} ; \boldsymbol{\theta}\right), y_{i}\right)
$$

Neural network

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\lambda \frac{1}{N} \sum_{i=1}^{N} \nabla L\left(h\left(x_{i} ; \boldsymbol{\theta}\right), y_{i}\right)
$$

Computing the gradient of the loss

$$
\begin{gathered}
\nabla L(h(x ; \boldsymbol{\theta}), y) \\
z=h(x ; \boldsymbol{\theta}) \\
\nabla_{\boldsymbol{\theta}} L(z, y)=\frac{\partial L(z, y)}{\partial z} \frac{\partial z}{\partial \boldsymbol{\theta}}
\end{gathered}
$$

Learning with function compositions

- $F=f_{5} \circ f_{4} \circ f_{3} \circ f_{2} \circ f_{1}$
- Suppose f_{i} has learnable parameters w_{i}, takes input z_{i-1} and produces output z_{i}
- Need to compute $\frac{\partial F}{\partial w_{i}}$. How?
- Key idea: recurrence
- If we know $\frac{\partial F}{\partial z_{i}}$, then chain rule gives: $\frac{\partial F}{\partial z_{i}} \frac{\partial z_{i}}{\partial w_{i}}$, second term only requires each function be differentiable
- Also $\frac{\partial F}{\partial z_{i}}=\frac{\partial F}{\partial z_{i+1}} \frac{\partial z_{i+1}}{\partial z_{i}}$

Learning with function compositions

Backppopagation

Backpropagation for a sequence of functions

$$
\begin{aligned}
& \text { Previous } \\
& \text { term } \\
& z_{i}=f_{i}\left(z_{i-1}, w_{i}\right) \\
& z_{0}=x \\
& z=z_{n}
\end{aligned}
$$

Backpropagation for a sequence of functions

$$
z_{i}=f_{i}\left(z_{i-1}, w_{i}\right) \quad z_{0}=x \quad z=z_{n}
$$

- Assume we can compute partial derivatives of each function

$$
\frac{\partial z_{i}}{\partial z_{i-1}}=\frac{\partial f_{i}\left(z_{i-1}, w_{i}\right)}{\partial z_{i-1}} \quad \frac{\partial z_{i}}{\partial w_{i}}=\frac{\partial f_{i}\left(z_{i-1}, w_{i}\right)}{\partial w_{i}}
$$

- Use $g\left(z_{i}\right)$ to store gradient of z w.r.t $z_{i}, g\left(w_{i}\right)$ for w_{i}
- Calculate g_{i} by iterating backwards

$$
g\left(z_{n}\right)=\frac{\partial z}{\partial z_{n}}=1 \quad g\left(z_{i-1}\right)=\frac{\partial z}{\partial z_{i}} \frac{\partial z_{i}}{\partial z_{i-1}}=g\left(z_{i}\right) \frac{\partial z_{i}}{\partial z_{i-1}}
$$

- Use gi to compute gradient of parameters

$$
g\left(w_{i}\right)=\frac{\partial z}{\partial z_{i}} \frac{\partial z_{i}}{\partial w_{i}}=g\left(z_{i}\right) \frac{\partial z_{i}}{\partial w_{i}}
$$

Backpropagation for a sequence of functions

- Each "function" has a "forward" and "backward" module
- Forward module for f_{i}
- takes $\mathrm{z}_{\mathrm{i}-1}$ and weight w_{i} as input
- produces z_{i} as output
- Backward module for f_{i}
- takes $g\left(z_{i}\right)$ as input
- produces $g\left(z_{i-1}\right)$ and $g\left(w_{i}\right)$ as output

$$
g\left(z_{i-1}\right)=g\left(z_{i}\right) \frac{\partial z_{i}}{\partial z_{i-1}} \quad g\left(w_{i}\right)=g\left(z_{i}\right) \frac{\partial z_{i}}{\partial w_{i}}
$$

Backpropagation for a sequence of functions

Backpropagation for a sequence of functions

Chain rule for vectors

$$
\begin{gathered}
\frac{\partial a}{\partial b}=\frac{\partial a}{\partial c} \frac{\partial c}{\partial b} \quad \frac{\partial a_{i}}{\partial b_{j}}=\sum_{k} \frac{\partial a_{i}}{\partial c_{k}} \frac{\partial c_{k}}{\partial b_{j}} \\
\frac{\partial \mathbf{a}}{\partial \mathbf{b}}(i, j)=\frac{\partial a_{i}}{\partial b_{j}} \\
\frac{\partial \mathbf{a}}{\partial \mathbf{b}}=\frac{\partial \mathbf{a}}{\partial \mathbf{c}} \frac{\partial \mathbf{c}}{\partial \mathbf{b}}
\end{gathered}
$$

Loss as a function

Beyond sequences: computation graphs

- Arbitrary graphs of functions
- No distinction between intermediate outputs and parameters

Computation graph - Functions

- Each node implements two functions
- A "forward"
- Computes output given input
- A "backward"
- Computes derivative of z w.r.t input, given derivative of z w.r.t output

Computation graphs

Computation graphs

Computation graphs

Computation graphs

Exploring convnet architectures

Deeper is better

Challenge winner's accuracy

Deeper is better

Challenge winner's accuracy

The VGG pattern

- Every convolution is 3×3, padded by 1
- Every convolution followed by ReLU
- ConvNet is divided into "stages"
- Layers within a stage: no subsampling
- Subsampling by 2 at the end of each stage
- Layers within stage have same number of channels
- Every subsampling \rightarrow double the number of channels

Challenges in training: exploding / vanishing gradients

- Vanishing / exploding gradients

$$
\frac{\partial z}{\partial z_{i}}=\frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \ldots \frac{\partial z_{i+1}}{\partial z_{i}}
$$

- If each term is (much) greater than $1 \rightarrow$ explosion of gradients
- If each term is (much) less than $1 \rightarrow$ vanishing gradients

Challenges in training: dependence on init

Solutions

- Careful init
- Batch normalization
- Residual connections

Careful initialization

- Key idea: want variance to remain approx. constant
- Variance increases in backward pass => exploding gradient
- Variance decreases in backward pass => vanishing gradient
- "MSRA initialization"
- weights = Gaussian with 0 mean and variance $=2 /\left(k^{*} k^{*} d\right)$

Residual connections

- In general, gradients tend to vanish
- Key idea: allow gradients to flow unimpeded

$$
\begin{gathered}
z_{i+1}=f_{i+1}\left(z_{i}, w_{i+1}\right) \quad \frac{\partial z_{i+1}}{\partial z_{i}}=\frac{\partial f_{i+1}\left(z_{i}, w_{i+1}\right)}{\partial z_{i}} \\
\frac{\partial z}{\partial z_{i}}=\frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_{i+1}}{\partial z_{i}}
\end{gathered}
$$

Residual connections

- In general, gradients tend to vanish
- Key idea: allow gradients to flow unimpeded

$$
\begin{gathered}
z_{i+1}=g_{i+1}\left(z_{i}, w_{i+1}\right)+z_{i} \quad \frac{\partial z_{i+1}}{\partial z_{i}}=\frac{\partial g_{i+1}\left(z_{i}, w_{i+1}\right)}{\partial z_{i}}+I \\
\frac{\partial z}{\partial z_{i}}=\frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \ldots \frac{\partial z_{i+1}}{\partial z_{i}}
\end{gathered}
$$

Residual connections

- Assumes all z_{i} have the same size
- True within a stage
- Across stages?
- Doubling of feature channels
- Subsampling
- Increase channels by 1×1 convolution
- Decrease spatial resolution by subsampling

$$
z_{i+1}=g_{i+1}\left(z_{i}, w_{i+1}\right)+\operatorname{subsample}\left(W z_{i}\right)
$$

A residual block

- Instead of single layers, have residual connections over block

Bottleneck blocks

- Problem: When channels increases, 3×3 convolutions introduce many parameters
- $3 \times 3 \times c^{2}$
- Key idea: use 1×1 to project to lower dimensionality, do convolution, then come back
- $c \times d+3 \times 3 \times d^{2}+d \times c$

The ResNet pattern

- Decrease resolution substantially in first layer
- Reduces memory consumption due to intermediate outputs
- Divide into stages
- maintain resolution, channels in each stage
- halve resolution, double channels between stages
- Divide each stage into residual blocks
- At the end, compute average value of each channel to feed linear classifier

Putting it all together - Residual networks

DenseNets

