
Embodied cognition



Recognition today

• Large dataset of isolated, labeled images
• Where do the images come from?
• What do we do with the labels?
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Embodied agents

• Agents that perceive and act in the 
world
• Input images come from the 

physical world
• “Recognition” is used to act



Embodied cognition

• Perception now depends on action: state of agent or state of the 
world
• No more collections of isolated images

• Feedback to agent comes through consequences of actions
• No well-defined labels

• Three problems:
• Learning to act to achieve goals, with perception in the loop
• Self-supervised learning: learning perception from action
• Active perception: learning to act for perception



Learning to act to achieve goals



Markov decision processes

• Agent acting in an environment
• Environment has states that are 

known to agent
• Agent takes actions
• Action + random stuff leads to a 

state transition
• Environment gives agent reward
• Agent’s goal: maximize return = 

total reward over time
• Agent’s policy: mapping from states 

to actions
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Markov decision processes

• Set of states !
• Set of actions "
• Transition function
# $, &, $' = ) $*+, = $' $* = $, &* = &)

• Reward function
. $ = /(1*|$* = $)

• Return (with discount)
3
*
4*1* , 4 ∈ [0,1)

• Must learn policy: 9: !× " → [0,1]
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Why is this hard?

• Stochasticity
• T and R are non-deterministic

• Unknown dynamics
• T and R are unknown: don’t know which action will lead to which state

• Partial feedback
• Only get to see consequences of action taken

• Long term consequences
• Actions can influence rewards several time steps later



Example: self-driving cars

• Stochasticity
• Pressing gas pedal does not always cause acceleration
• Weather

• Unknown dynamics
• Do not know where roads lead
• Do not know what other cars might do

• Long term consequences
• E.g., may only realize later that took a wrong turn earlier



Model-based control

• MDPs:
• States !, actions ", transitions #(%, ', %(), reward function *(%)

• What is known, what is unknown?
• Case 1: S, A, T, R known, only policy unknown
• T, R: model dynamics
• Example: self-driving in an empty city with a map

• Problem becomes one of planning or optimal control



Model-based control

• If states are discrete
• Algorithms from AI : search

• If states are continuous
• Algorithms from control theory : optimization

• Why is this hard?
• Large space of states, most not good
• Stochasticity, e.g., wheels might slip

• What to do when we don’t know model dynamics?
• Learn dynamics! (System identification in control theory)
• Reinforcement learning



Markov decision processes

• Value function !" # :
• What return will I get if I start from state s and follow policy $ thereafter?
• !∗ # = max" !" # = !"∗(#) where $∗is the optimal policy

• Action-value function ," #, . :
• What return will I get if I start from state s, take action a and follow policy $

thereafter
• ,∗ #, . = max" ," #, . = ,"∗(#, .)



Bellman equations

• !" #, % = ' # + ) ∑+, - #, %, #, ∑., / #,, %, !" (#,, %,)
• 2" # = ' # + ) ∑. / #, % ∑+, - #, %, #, 2"(#,)
• !∗ #, % = ' # + ) ∑+4 - #, %, #, max

.,
!∗(#,, %,)

• 2∗ # = ' # + )max
.
∑+, - #, %, #, 2∗(#,)



Basic RL algorithms I: Policy iteration

• Start with a random policy
• Repeat:

1. Policy evaluation: Evaluate !"
2. Policy improvement: update policy

• # $, & = ((& = argmax/ !" $, & )
• But deterministic policies may not explore all states
• 1-greedy: with small probability choose random action instead



Policy evaluation: (Q-) value iteration

• If we know T and R, policy evaluation is “easy”
• Convert bellman equation into recurrence
• !" #, % = ' # + ) ∑+, - #, %, #, ∑., / #,, %, !" (#,, %,)
• !2" #, % ← ' # + ) ∑+, - #, %, #, ∑., / #,, %, !245" (#,, %,)
• Can be done “in the head”



Policy evaluation: sarsa

• If we don’t know T and R, have to deal with samples and try out in the 
world
• Try current policy to get sequence (… , $%, &%, '%, $%(), &%(), … )
• Convert Bellman equation into an update
• Bellman equation:
+, $, & = . $ + 0123~ 5(2,6,⋅) 163~ ,(23,⋅)+,($8, &8)
• Sample update:

+%, $%, &% ← 1 − < +%=), $%, &% + <('% + 0+%=), $%(), &%() )



Basic RL algorithms II: Q-learning

• Policy iteration can be slow
• Can update policy without waiting for full evaluation
• Alternative: learn Q* directly
• Act using some random policy, but use observations to find Q*



Q-learning

• !∗ #, % = ' # + ) ∑+, - #, %, #. max
2.

!∗(#., %.)
• Every iteration, agent is in state s, takes action a, receives reward r 

and reaches state s’
• !5 #, % ← 1 − 9 !5:; #, % + 9(< + )max

2.
!5:;(#., %.))

• This converges to Q*

• How do we get the policy from Q*?
• =∗ # = max

2
!∗(#, %)



Basic RL algorithms III: Policy gradient

• How about directly optimizing the policy instead of going through Q?
• Pipeline:
• Use !" to choose action
• Get reward
• Take step along gradient to produce better policy

• Problem: choosing action is a non-differentiable function of the policy
• How do we get the gradient?



REINFORCE

• Suppose the agent takes a sequence ! of actions "# and goes through 
states $# under policy %
• Probability of sequence = %& ! = ∏# %&($#, "#)
• Total return = , ! = ∑# .#,#
• / 0 = 12 , = ∑3 , ! %&(!)
• A single run gives a sample  ! and an estimate of /(0)
• ∇&/ 0 = ∑3 ,(!) ∇&%&(!)
• How do we compute ∇&/ 0 with samples?



REINFORCE

• ∇"# $ = ∑' ((*) ∇","(*)
• Identity: ∇" ," * = ," * ∇- .- '

.- ' = ," * ∇"log ," *
• Thus ∇" # $ = ∑' ( * ," * ∇"log ," * = E.[( * ∇"log ," * ]
• Thus to get gradient, simply compute ( * ∇"log ," * for every run 

and average



Learning to play Atari games

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature518.7540 (2015): 529-533.



Learning to do robotic tasks

End-to-End Training of Deep Visuomotor Policies. S. Levine, C. Finn, T. Darrell, P. Abbeel. In JMLR, 2016



Reinforcement learning and generalization

• RL learns a policy
• Policies are specific to goals
• Reinforcement learning = learning to play a particular game
• Separate model for each game
• “Close this bottle”
• “Peel this banana”

• General model?



Conditioning on input and target

Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning. Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. 
Gupta, L. Fei-fei, A. Farhadi. In ICRA, 2017



Partial observations

• Assumption: image conveys the entire state
• True for Atari, not true for real worls
• Simple idea: let neural network maintain state internally

Mirowski, Piotr, et al. "Learning to Navigate in Cities Without a Map." arXiv preprint arXiv:1804.00168 (2018).



Incorporating domain knowledge

• Should we rely on learning 
entirely?

• E.g. for navigation, maintain a 
map of the environment and of 
agent’s state within it

• Classical solution: SLAM 
(Simultaneous localization and 
mapping)

Gupta, Saurabh, et al. "Cognitive mapping and planning for visual navigation." arXiv preprint arXiv:1702.03920 3 
(2017).



Reflex agents

• Reflex agents
• Map states to actions
• Are feedforward
• Cannot explore / back-track unless state records history
• Have to be trained on each environment



Planning

• If we can predict 
consequences of actions, we 
can plan



Model-based RL

• Learn a ”forward model” of how states evolve
• E.g., ! ", $, "% = ' "()* = "% "( = ", $( = $)

• Then we can optimize , offline for reaching the goal
• Open-loop planning:
• Take the first action, see where we land
• Re-optimize



Inverse model

• Predicting image pixels is hard
• Can also have inverse model: given s 

and s’, what action takes me from s to 
s’?

• Use inverse model to find an initial 
action, perform action, then re-
evaluate.

Agrawal, Pulkit, et al. "Learning to poke by poking: Experiential learning of intuitive physics." Advances in Neural 
Information Processing Systems. 2016.


