Embodied cognition

Recognition today

 Large dataset of isolated, labeled images

* Where do the images come from?
* What do we do with the labels?

Embodied agents

* Agents that perceive and act in the
world

* Input images come from the
physical world

* “Recognition” is used to act

Embodied cognition

* Perception now depends on action: state of agent or state of the
world

* No more collections of isolated images

* Feedback to agent comes through consequences of actions
* No well-defined labels

* Three problems:
* Learning to act to achieve goals, with perception in the loop
* Self-supervised learning: learning perception from action
* Active perception: learning to act for perception

Learning to act to achieve goals

Markov decision processes

al-a
* Agent acting in an environment Agent

* Environment has states that are
known to agent

* Agent takes actions

e Action + random stuff leads to a
state transition

* Environment gives agent reward

State S

Reward
, - Enwronment Tt
* Agent’s goal: maximize return =
total reward over time '
* Agent’s policy: mapping from states
to actions

Markov decision processes
= O- NN
* Set of states S Agent
 Set of actions A L 3

Action

* Transition function

T(s,a,s'") = P(s;p1 =5'|s, =s,a, =a) Gt State S

 Reward function
R(s) = E(1¢|s; = s) Reward

* Return (with discount) EnVIronment Tt

S, el N

t
* Must learn policy: m: SX A — [0,1]

Why is this hard?

 Stochasticity
* T and R are non-deterministic

* Unknown dynamics
e Tand R are unknown: don’t know which action will lead to which state

* Partial feedback
* Only get to see consequences of action taken

* Long term consequences
* Actions can influence rewards several time steps later

Example: self-driving cars

 Stochasticity
* Pressing gas pedal does not always cause acceleration
* Weather

* Unknown dynamics
* Do not know where roads lead
* Do not know what other cars might do

¢ Long term consequences
* E.g., may only realize later that took a wrong turn earlier

Model-based control

* MDPs:

e States S, actions A, transitions T'(s, a, s"), reward function R(s)
 What is known, what is unknown?

* Case 1: S, A, T, R known, only policy unknown
* T, R: model dynamics
* Example: self-driving in an empty city with a map

* Problem becomes one of planning or optimal control

Model-based control

e |f states are discrete
e Algorithms from Al : search

* |f states are continuous
* Algorithms from control theory : optimization

* Why is this hard?

* Large space of states, most not good
 Stochasticity, e.g., wheels might slip

* What to do when we don’t know model dynamics?
* Learn dynamics! (System identification in control theory)
* Reinforcement learning

Markov decision processes

* Value function V™ (s):
 What return will | get if | start from state s and follow policy T thereafter?

* V*(s) = max V*(s) = V™ (s) where 1*is the optimal policy
T

* Action-value function Q™ (s, a):

* What return will | get if | start from state s, take action a and follow policy
thereafter

 Q*(s,a) = max Q" (s,a) = Q™ (s,a)

Bellman equations

*Q"(s,a) =R(s)+yXaT(s,as") gn(s',a)Q™ (s',a")
*V®(s) =R(s)+y X n(s,a))., T(s,a,s")VT(s")
Q(s,a) =R(s) +y2yT(s,a5s") max Q*(s',a")

V*(s) =R(s) +)/mC?XZS,T(S, a,s')V*(s")

Basic RL algorithms |: Policy iteration

 Start with a random policy

* Repeat:
1. Policy evaluation: Evaluate Q™

2. Policy improvement: update policy

* (s,a) = [(a = argmax, Q™(s,a))
* But deterministic policies may not explore all states
* e-greedy: with small probability choose random action instead

Policy evaluation: (Q-) value iteration

* If we know T and R, policy evaluation is “easy”
* Convert bellman equation into recurrence
*Q"(s,a) =R(s) +y 2 T(s,a,5") Yo, m(s’,a)Q™ (s',a’)

*QF(s,a) <« R(s)+v2XaT(s,a5s") Yaur(s',a)Qr, (s',a")
 Can be done “in the head”

Policy evaluation: sarsa

* If we don’t know T and R, have to deal with samples and try out in the
world

* Try current policy to get sequence (..., S¢, A, Tty Sty Apg1s oe)
* Convert Bellman equation into an update
* Bellman equation:

Q"(s,a) =R(s) +VEy 1509 Eg/e g(s7 @7 (S, a")

 Sample update:
Qf (sp,ar) « (1 —a)Q¢—1 (s, ar) + a(re + vQi—1(St+1, A1)

Basic RL algorithms II: Q-learning

* Policy iteration can be slow
e Can update policy without waiting for full evaluation
* Alternative: learn Q* directly

e Act using some random policy, but use observations to find Q*

Q-learning

* Q*(S, a) — R(S) +)/ZS, T(S, Cl,S’) l’r}LE,lX Q*(S’, Cl’)

* Every iteration, agent is in state s, takes action a, receives reward r
and reaches state s’

*Q(s,a) « 1 —a)Qt 1(s,a) + a(r + ymax Qt1(s’,a"))

* This converges to Q"
 How do we get the policy from Q*?

1 (s) = max Q*(s,a)

Basic RL algorithms Ill: Policy gradient

* How about directly optimizing the policy instead of going through Q?

* Pipeline:
* Use 1y to choose action
* Get reward
* Take step along gradient to produce better policy

* Problem: choosing action is a non-differentiable function of the policy
* How do we get the gradient?

REINFORCE

* Suppose the agent takes a sequence 1 of actions a; and goes through
states s; under policy

* Probability of sequence =y (7) =[], mg (S, ay)
 Total return =r(7) = X, v'r;

* J(8) = Ex(r) = X r(D)mg (7)

* Asingle run gives a sample 7 and an estimate of /] (0)
* Vo] (8) = 2. 7(7) Vomy(T)

* How do we compute V4 /(8) with samples?

REINFORCE

* Vo] (8) = X 1(7) Vomy(T)

o Identity: Vg mg (1) = 1y (7) Vo mo(T)

o)~ T (t)Vglog my(7)

* Thus Vy J(0) = 2. 7(7) mg(T)Vglog my(7) = E[r(T)Vglog 7y (7)]

* Thus to get gradient, simply compute r(t)Vylog o (7) for every run
and average

Learning to play Atari games

Convglution Convglution Fully connected Fully cgnnected

0
00DO0ooO0 O0o00ooOo Qppoooo oOoo0oooo ooo0oooo
® 8. & & & 8 8 0 0000 Ee e

2 ® ® & % 9 & 9 0 " T S e S e OO R e
LI I N I I I IR I I I I I TR I I I I I e I

A0oAARAANR
+ 1+ 0+0+-0+0+- 0+ T~ « <+ > E
EEEEEERGL L

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature518.7540 (2015): 529-533.

Learning to do robotic tasks

RGB image conv1 conv2 conv3 spatial softmax feature motor

) points torques
64 filters \ Iters : filters butions| -
7x7 conv \ - 324 » 32 el fully fully fully
stride 2 5x5 conv Sx5 conv expected connected [l connected [connected
RelU RelLU RelLU l_’ 2D position RelU RelLU linear
240 E
117 113 109 109 64 40 40 7
109 109

robot
configuration
39

End-to-End Training of Deep Visuomotor Policies. S. Levine, C. Finn, T. Darrell, P. Abbeel. In JMLR, 2016

Reinforcement learning and generalization

* RL learns a policy
* Policies are specific to goals
* Reinforcement learning = learning to play a particular game

» Separate model for each game

* “Close this bottle”
* “Peel this banana”

e General model?

Conditioning on input and target

target-driven visual navigation

] update |
observation new observation

act

Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning. Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A.
Gupta, L. Fei-fei, A. Farhadi. In ICRA, 2017

Partial observations

] f
* Assumption: image conveys the entire state
e True for Atari, not true for real worls [C J

e Simple idea: let neural network maintain state internally
[conv]
& X 4

Mirowski, Piotr, et al. "Learning to Navigate in Cities Without a Map." arXiv preprint arXiv:1804.00168 (2018).

t-1 ,rl-]

Incorporating domain knowledge

* Should we rely on learning
entirely?

* E.g. for navigation, maintain a

map of the environment and of
agent’s state within it

* Classical solution: SLAM
(Simultaneous localization and

mapping)

Egomotion

o
o
o
O

[Goal

—

:

Differentiable
Mapper

Multiscale belief of the
world in egocentric
coordinate frame

Hierarchical
Planner

Differentiable
Mapper

Update multiscale belief
of the world in egocentric
coordinate frame

leferentlable

]—~ ap®
Action

—r

Differentiable .
Hierarchical -
Planner [*| 9C°

Action

Gupta, Saurabh, et al. "Cognitive mapping and planning for visual navigation." arXiv preprint arXiv:1702.03920 3

(2017).

Reflex agents

* Reflex agents
* Map states to actions
* Are feedforward
* Cannot explore / back-track unless state records history
* Have to be trained on each environment

Planning

* If we can predict
consequences of actions, we
can plan

Model-based RL

e Llearn a "forward model” of how states evolve

* Eg.,T(s,a,s") =P(sg1q1 =S'|s; = s,a; = a)
* Then we can optimize m offline for reaching the goal
* Open-loop planning:

* Take the first action, see where we land

* Re-optimize

Inverse model

* Predicting image pixels is hard

e Can also have inverse model: given s

and s’, what action takes me from s to
s’?

 Use inverse model to find an initial
action, perform action, then re-
eva | u ate . . Predict Pokef

Agrawal, Pulkit, et al. "Learning to poke by poking: Experiential learning of intuitive physics." Advances in Neural
Information Processing Systems. 2016.

