
Embodied cognition

Recognition today

• Large dataset of isolated, labeled images
• Where do the images come from?
• What do we do with the labels?

, 1), , 1), , 0) , … }{(((

Embodied agents

• Agents that perceive and act in the
world
• Input images come from the

physical world
• “Recognition” is used to act

Embodied cognition

• Perception now depends on action: state of agent or state of the
world
• No more collections of isolated images

• Feedback to agent comes through consequences of actions
• No well-defined labels

• Three problems:
• Learning to act to achieve goals, with perception in the loop
• Self-supervised learning: learning perception from action
• Active perception: learning to act for perception

Learning to act to achieve goals

Markov decision processes

• Agent acting in an environment
• Environment has states that are

known to agent
• Agent takes actions
• Action + random stuff leads to a

state transition
• Environment gives agent reward
• Agent’s goal: maximize return =

total reward over time
• Agent’s policy: mapping from states

to actions

Environment

Agent

Action
!" State #"

Reward
$"

Markov decision processes

• Set of states !
• Set of actions "
• Transition function
$, &, $' =) $*+, = $' $* = $, &* = &)

• Reward function
. $ = /(1*|$* = $)

• Return (with discount)
3
*
4*1* , 4 ∈ [0,1)

• Must learn policy: 9: !× " → [0,1]

Environment

Agent

Action
&* State $*

Reward
1*

Why is this hard?

• Stochasticity
• T and R are non-deterministic

• Unknown dynamics
• T and R are unknown: don’t know which action will lead to which state

• Partial feedback
• Only get to see consequences of action taken

• Long term consequences
• Actions can influence rewards several time steps later

Example: self-driving cars

• Stochasticity
• Pressing gas pedal does not always cause acceleration
• Weather

• Unknown dynamics
• Do not know where roads lead
• Do not know what other cars might do

• Long term consequences
• E.g., may only realize later that took a wrong turn earlier

Model-based control

• MDPs:
• States !, actions ", transitions #(%, ', %(), reward function *(%)

• What is known, what is unknown?
• Case 1: S, A, T, R known, only policy unknown
• T, R: model dynamics
• Example: self-driving in an empty city with a map

• Problem becomes one of planning or optimal control

Model-based control

• If states are discrete
• Algorithms from AI : search

• If states are continuous
• Algorithms from control theory : optimization

• Why is this hard?
• Large space of states, most not good
• Stochasticity, e.g., wheels might slip

• What to do when we don’t know model dynamics?
• Learn dynamics! (System identification in control theory)
• Reinforcement learning

Markov decision processes

• Value function !" # :
• What return will I get if I start from state s and follow policy $ thereafter?
• !∗ # = max" !" # = !"∗(#) where $∗is the optimal policy

• Action-value function ," #, . :
• What return will I get if I start from state s, take action a and follow policy $

thereafter
• ,∗ #, . = max" ," #, . = ,"∗(#, .)

Bellman equations

• !" #, % = ' # +) ∑+, - #, %, #, ∑., / #,, %, !" (#,, %,)
• 2" # = ' # +) ∑. / #, % ∑+, - #, %, #, 2"(#,)
• !∗ #, % = ' # +) ∑+4 - #, %, #, max

.,
!∗(#,, %,)

• 2∗ # = ' # +)max
.
∑+, - #, %, #, 2∗(#,)

Basic RL algorithms I: Policy iteration

• Start with a random policy
• Repeat:

1. Policy evaluation: Evaluate !"
2. Policy improvement: update policy

• # $, & = ((& = argmax/ !" $, &)
• But deterministic policies may not explore all states
• 1-greedy: with small probability choose random action instead

Policy evaluation: (Q-) value iteration

• If we know T and R, policy evaluation is “easy”
• Convert bellman equation into recurrence
• !" #, % = ' # +) ∑+, - #, %, #, ∑., / #,, %, !" (#,, %,)
• !2" #, % ← ' # +) ∑+, - #, %, #, ∑., / #,, %, !245" (#,, %,)
• Can be done “in the head”

Policy evaluation: sarsa

• If we don’t know T and R, have to deal with samples and try out in the
world
• Try current policy to get sequence (… , $%, &%, '%, $%(), &%(), …)
• Convert Bellman equation into an update
• Bellman equation:
+, $, & = . $ + 0123~ 5(2,6,⋅) 163~ ,(23,⋅)+,($8, &8)
• Sample update:

+%, $%, &% ← 1 − < +%=), $%, &% + <('% + 0+%=), $%(), &%())

Basic RL algorithms II: Q-learning

• Policy iteration can be slow
• Can update policy without waiting for full evaluation
• Alternative: learn Q* directly
• Act using some random policy, but use observations to find Q*

Q-learning

• !∗ #, % = ' # +) ∑+, - #, %, #. max
2.

!∗(#., %.)
• Every iteration, agent is in state s, takes action a, receives reward r

and reaches state s’
• !5 #, % ← 1 − 9 !5:; #, % + 9(< +)max

2.
!5:;(#., %.))

• This converges to Q*

• How do we get the policy from Q*?
• =∗ # = max

2
!∗(#, %)

Basic RL algorithms III: Policy gradient

• How about directly optimizing the policy instead of going through Q?
• Pipeline:
• Use !" to choose action
• Get reward
• Take step along gradient to produce better policy

• Problem: choosing action is a non-differentiable function of the policy
• How do we get the gradient?

REINFORCE

• Suppose the agent takes a sequence ! of actions "# and goes through
states $# under policy %
• Probability of sequence = %& ! = ∏# %&($#, "#)
• Total return = , ! = ∑# .#,#
• / 0 = 12 , = ∑3 , ! %&(!)
• A single run gives a sample ! and an estimate of /(0)
• ∇&/ 0 = ∑3 ,(!) ∇&%&(!)
• How do we compute ∇&/ 0 with samples?

REINFORCE

• ∇"# $ = ∑' ((*) ∇","(*)
• Identity: ∇" ," * = ," * ∇- .- '

.- ' = ," * ∇"log ," *
• Thus ∇" # $ = ∑' (* ," * ∇"log ," * = E.[(* ∇"log ," *]
• Thus to get gradient, simply compute (* ∇"log ," * for every run

and average

Learning to play Atari games

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature518.7540 (2015): 529-533.

Learning to do robotic tasks

End-to-End Training of Deep Visuomotor Policies. S. Levine, C. Finn, T. Darrell, P. Abbeel. In JMLR, 2016

Reinforcement learning and generalization

• RL learns a policy
• Policies are specific to goals
• Reinforcement learning = learning to play a particular game
• Separate model for each game
• “Close this bottle”
• “Peel this banana”

• General model?

Conditioning on input and target

Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning. Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A.
Gupta, L. Fei-fei, A. Farhadi. In ICRA, 2017

Partial observations

• Assumption: image conveys the entire state
• True for Atari, not true for real worls
• Simple idea: let neural network maintain state internally

Mirowski, Piotr, et al. "Learning to Navigate in Cities Without a Map." arXiv preprint arXiv:1804.00168 (2018).

Incorporating domain knowledge

• Should we rely on learning
entirely?

• E.g. for navigation, maintain a
map of the environment and of
agent’s state within it

• Classical solution: SLAM
(Simultaneous localization and
mapping)

Gupta, Saurabh, et al. "Cognitive mapping and planning for visual navigation." arXiv preprint arXiv:1702.03920 3
(2017).

Reflex agents

• Reflex agents
• Map states to actions
• Are feedforward
• Cannot explore / back-track unless state records history
• Have to be trained on each environment

Planning

• If we can predict
consequences of actions, we
can plan

Model-based RL

• Learn a ”forward model” of how states evolve
• E.g., ! ", $, "% = ' "()* = "% "(= ", $(= $)

• Then we can optimize , offline for reaching the goal
• Open-loop planning:
• Take the first action, see where we land
• Re-optimize

Inverse model

• Predicting image pixels is hard
• Can also have inverse model: given s

and s’, what action takes me from s to
s’?

• Use inverse model to find an initial
action, perform action, then re-
evaluate.

Agrawal, Pulkit, et al. "Learning to poke by poking: Experiential learning of intuitive physics." Advances in Neural
Information Processing Systems. 2016.

