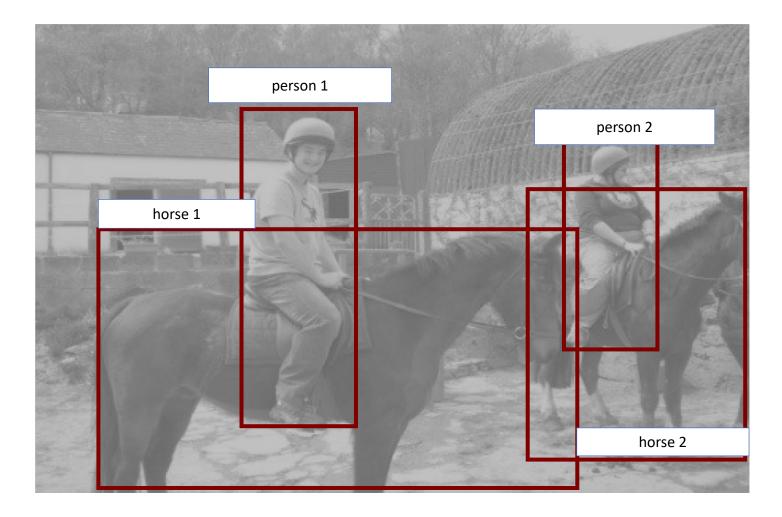
Object detection

The Task

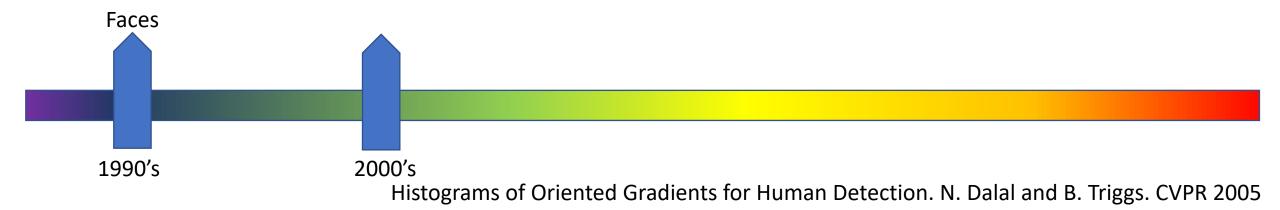


Datasets

- Face detection
- One category: face
- Frontal faces
- Fairly rigid, unoccluded

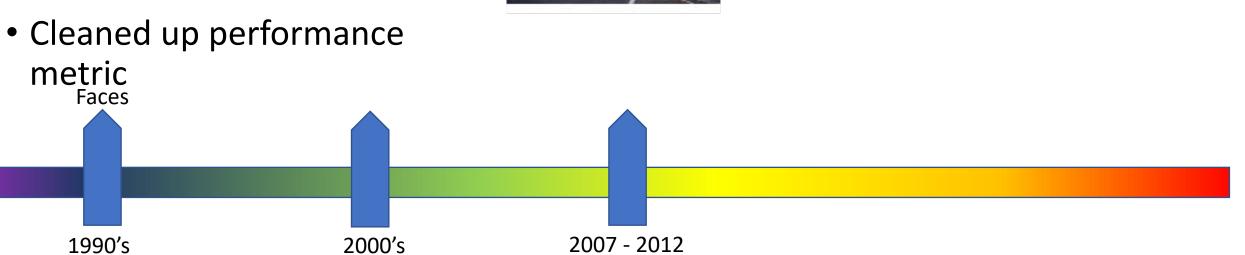
Pedestrians

- One category: pedestrians
- Slight pose variations and small distortions
- Partial occlusions



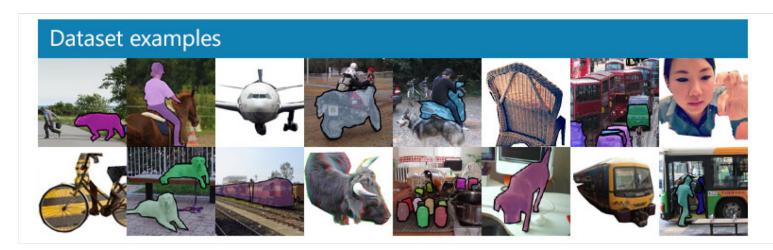
PASCAL VOC

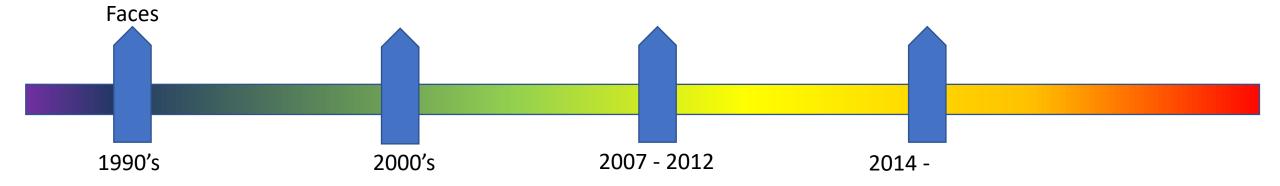
- 20 categories
- 10K images
- Large pose variations, heavy occlusions
- Generic scenes



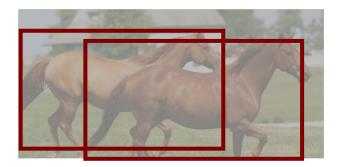
Сосо

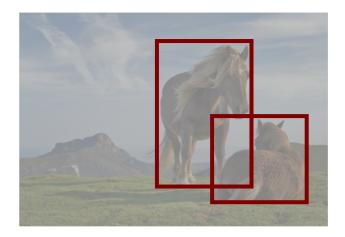
- 80 diverse categories
- 100K images
- Heavy occlusions, many objects per image, large scale variations

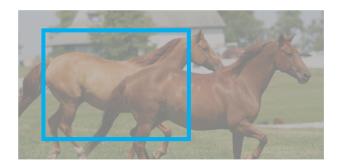


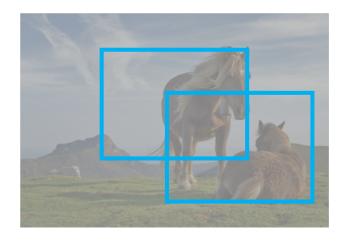


Evaluation metric

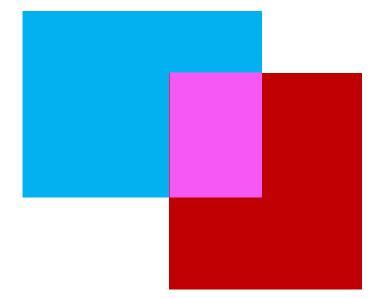


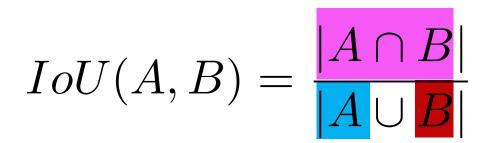






Matching detections to ground truth



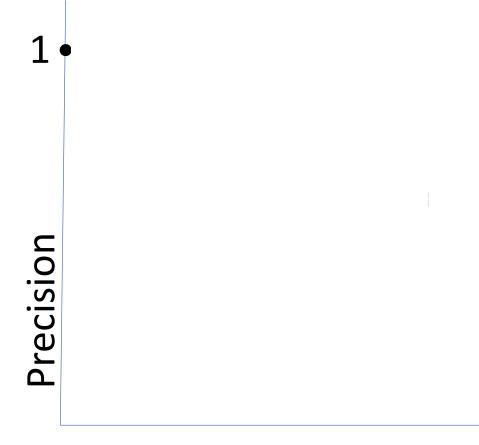


Matching detections to ground truth

- Match detection to most similar ground truth
 - highest IoU
- If IoU > 50%, mark as correct
- If multiple detections map to same ground truth, mark only one as correct
- **Precision** = #correct detections / total detections
- **Recall** = #ground truth with matched detections / total ground truth

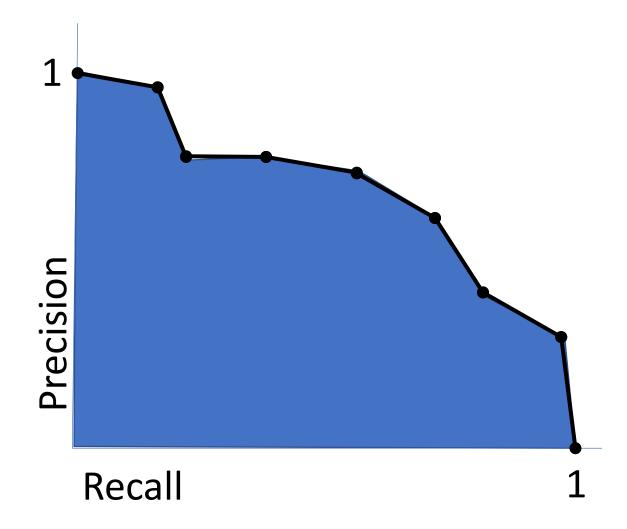
Tradeoff between precision and recall

- ML usually gives scores or probabilities, so threshold
- Too low threshold → too many detections → low precision, high recall
- Too high threshold \rightarrow too few detections \rightarrow high precision, low recall
- Right tradeoff depends on application
 - Detecting cancer cells in tissue: need high recall
 - Detecting edible mushrooms in forest: need high precision



Recall

Average precision



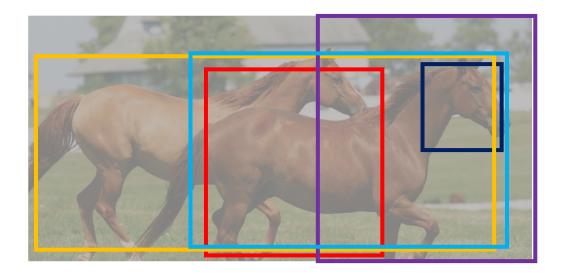
Average average precision

- AP marks detections with overlap > 50% as correct
- But may need better localization
- Average AP across multiple overlap thresholds
- Confusingly, still called average precision
- Introduced in COCO

Mean and category-wise AP

- Every category evaluated independently
- Typically report mean AP averaged over all categories
- Confusingly called "mean Average Precision", or "mAP"

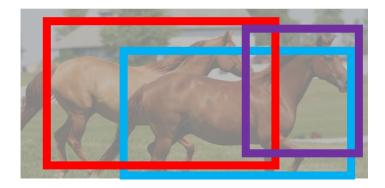
• Precise localization

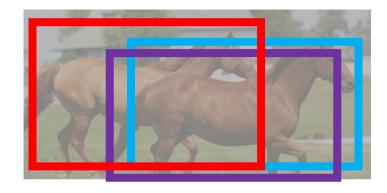


• Much larger impact of pose

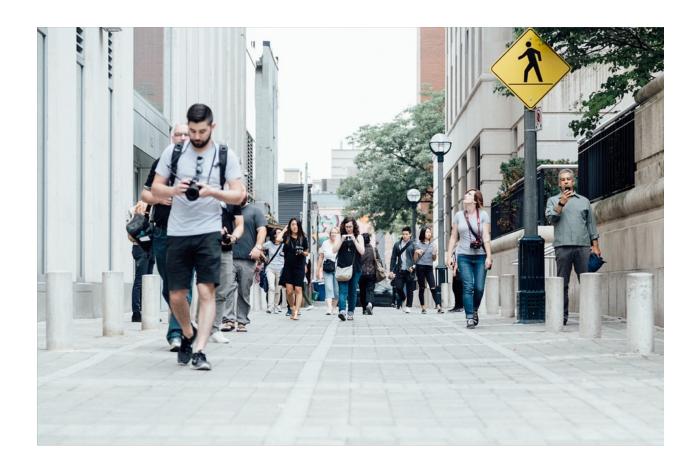
Occlusion makes localization difficult

• Counting





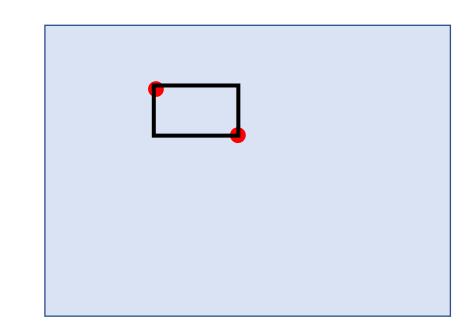
• Small objects



Detection as classification

- Run through every possible box and classify
 - Well-localized object of class k or not?
- How many boxes?
 - Every pair of pixels = 1 box

- For 300 x 500 image, N = 150K
- 2.25 x 10¹⁰ boxes!
- Related challenge: almost all boxes are negative!



Idea 1: scanning window

- Fix size
- Fix stride
- Crop boxes and classify
- Alternatively
 - Compute collection of feature maps
 - Convolve with filter

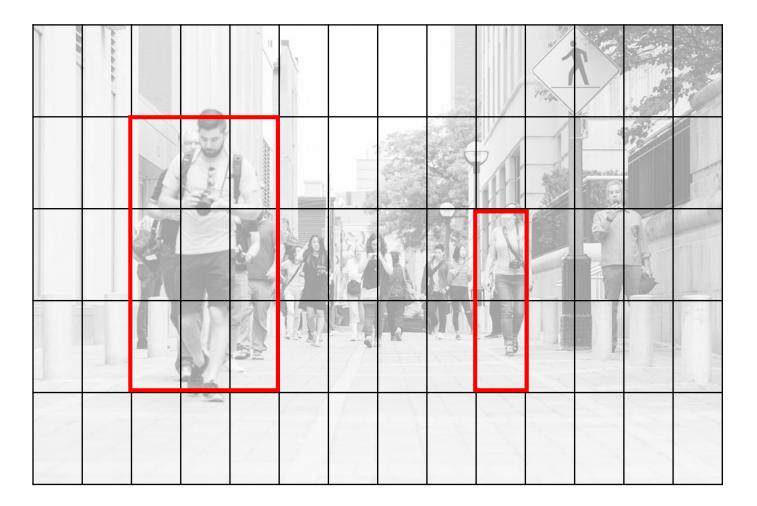
			1			1/	X	
		A	, I	Contract of				
				R	R	N.		
1	N	Les .	1. Ala	- 2 - 6		IJ,		
			1			1	1	

Multiple object sizes

- Objects can appear at any size
- *Discretize* set of sizes into a few different sizes
 - Sometimes called "anchors"
- Train separate classifier for each size

1.44				1			1	X	10-11-	Г.– - У
		the second	H						1111 1111	
	China and China				A	R	X			
	1	2	Ur.		-2-10	-MII	D.		L	
				7			1	11		

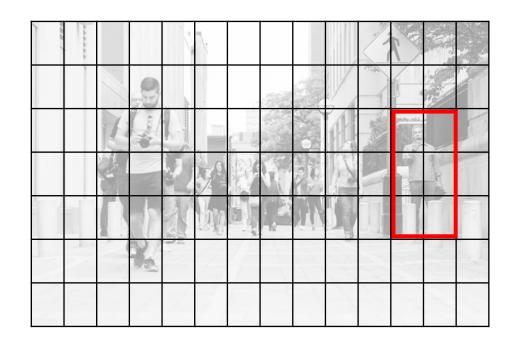
Dealing with large scale changes



Dealing with large scale changes

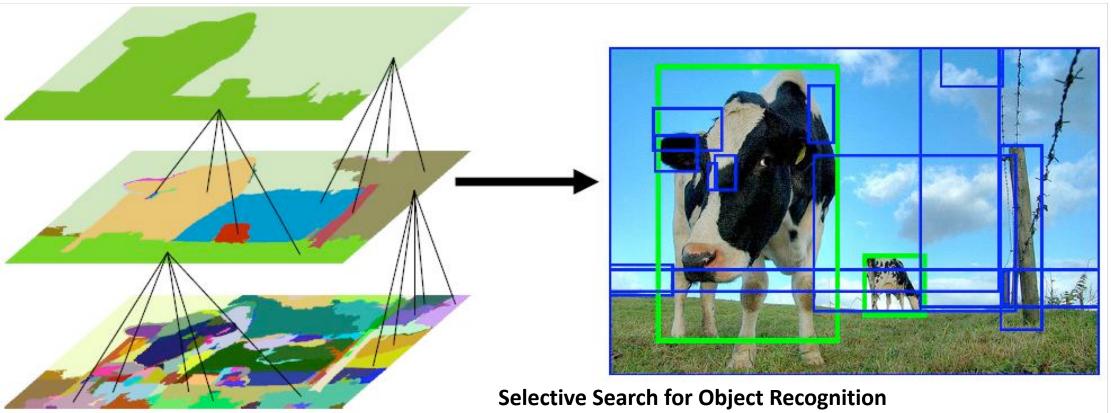
- Use an image pyramid
- Run same detector at multiple scales
- Take union of results

1. 440		1			A.	
	A			× Ŷ	F	
			244	ALC: NO		
	1	1 Mar		ALL Y		
		7			1	



Idea 2: Object proposals

• Use segmentation to produce ~5K "candidates"



J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders In International Journal of Computer Vision 2013.

Object proposals

- Basic idea: use grouping cues to identify segments that are likely to be objects
- Multiple versions
 - Do graph cuts with different seeds
 - Oversegment and then combinatorially group nearby objects

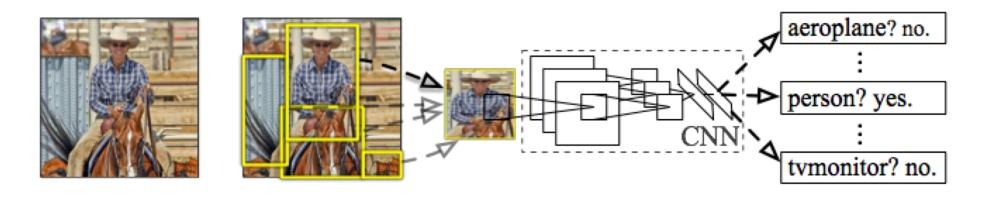
Two classes of object detection approaches

- Object proposal-based
- Also called two-stage detectors
- Canonical examples
 - R-CNN family
- Pros:
 - Smaller number of candidates to classify
 - Less class imbalance
 - "Cascade" approach
- Cons:
 - More complex, slower
 - Can miss due to missed proposals

- Scanning window-based
- Also called single-stage detectors
- Canonical examples
 - SSD family
- Pros
 - Simpler
 - Faster
- Cons
 - Larger number of candidates, more class imbalance
 - Can miss due to mismatched size

ConvNet-based object detection

R-CNN: Regions with CNN features

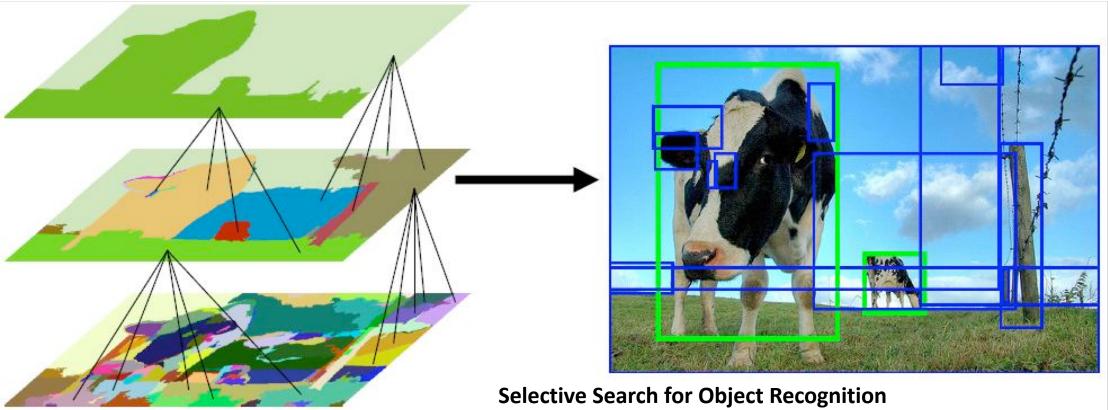


Input	Extract region	Compute CNN	Classify regions
image	proposals (~2k / image)	features	(linear SVM)

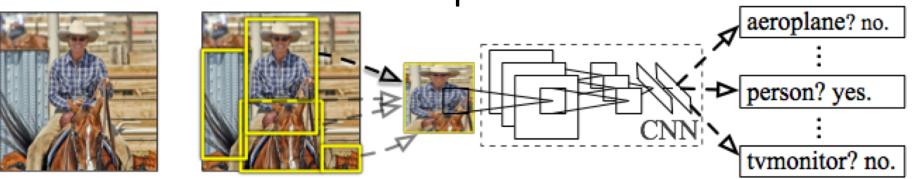
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation **R. Girshick**, J. Donahue, T. Darrell, J. Malik IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014

Step 1: Object proposals

• Use segmentation to produce ~5K candidates



J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders In International Journal of Computer Vision 2013.

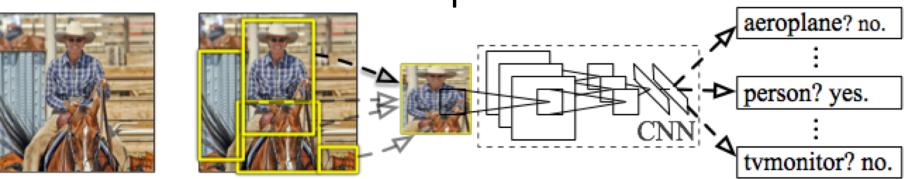


Compute CNN

features

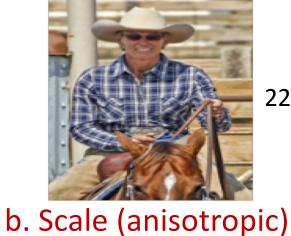
Input Extract region image proposals (~2k / image)

a. Crop

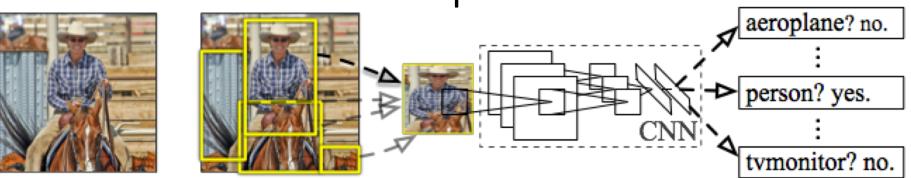


Input Extract region image proposals (~2k / image) Compute CNN features

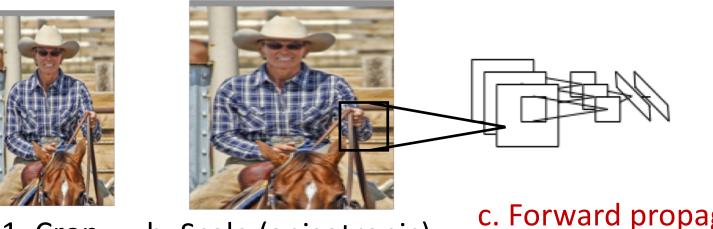
a. Crop



227 x 227

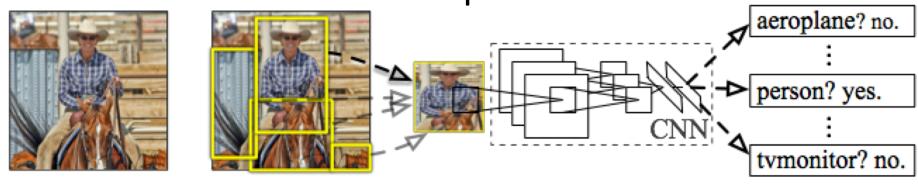


InputExtract regionCompute CNNimageproposals (~2k / image)features

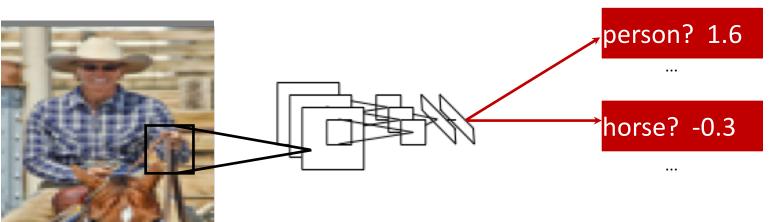


1. Crop b. Scale (anisotropic)

c. Forward propagate Output: "fc₇" features



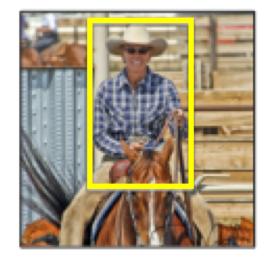
InputExtract regionCompute CNNClassifyimageproposals (~2k / image)featuresregions



Warped proposal

4096-dimensional fc7 feature vector linear classifiers (SVM or softmax)

Step 4: Object proposal refinement



Linear regression

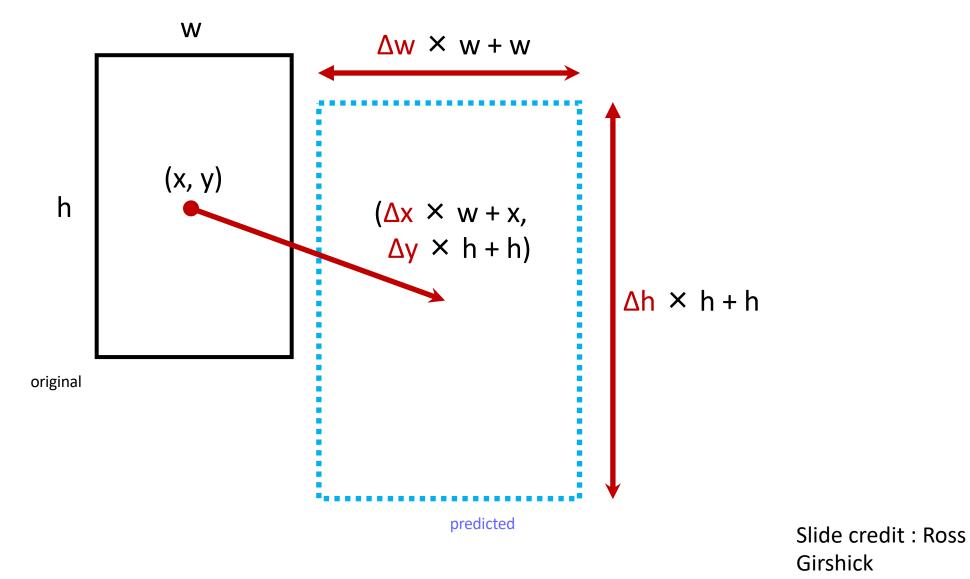
on CNN features

Original proposal

Predicted object bounding box

Bounding-box regression

Bounding-box regression



R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%

Reference systems

metric: mean average precision (higher is better

Slide credit : Ross Girshick

R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%
R-CNN	54.2%	50.2%
R-CNN + bbox regression	58.5%	53.7%

metric: mean average precision (higher is better)

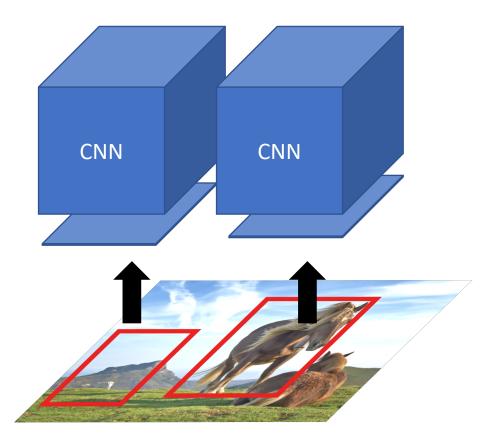
Slide credit : Ross Girshick

Training R-CNN

- Train convolutional network on ImageNet classification
- *Finetune* on detection
 - Classification problem!
 - Proposals with IoU > 50% are positives
 - Sample fixed proportion of positives in each batch because of imbalance

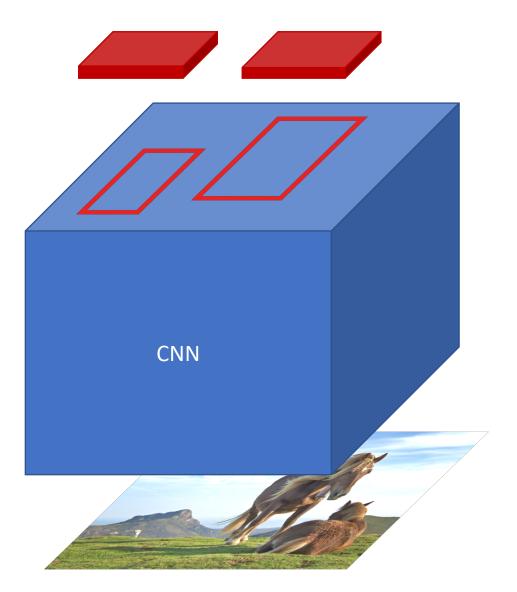
Speeding up R-CNN

- Each box requires a ConvNet run
- 2k boxes → 2000 times slower than classification!
- Can we share feature computation between the boxes?

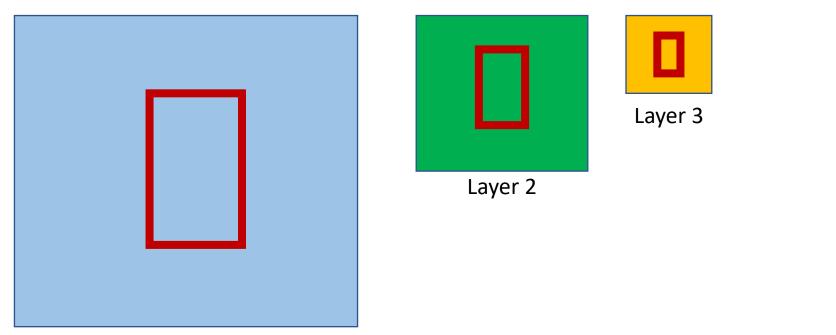


Speeding up R-CNN

- Each box requires a ConvNet run
- 2k boxes → 2000 times slower than classification!
- Can we share feature computation between the boxes?

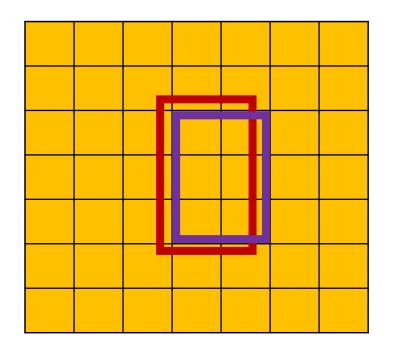


- How do we crop from a feature map?
- Step 1: Resize boxes to account for subsampling

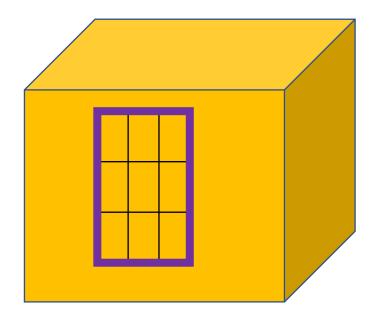


Fast R-CNN. Ross Girshick. In ICCV 2015

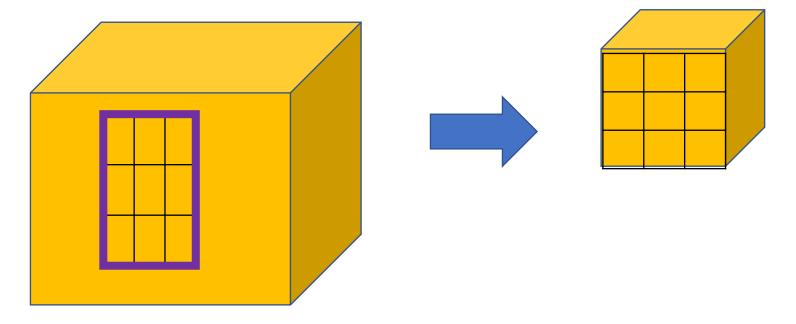
- How do we crop from a feature map?
- Step 2: Snap to feature map grid



- How do we crop from a feature map?
- Step 3: Overlay a new grid of fixed size



- How do we crop from a feature map?
- Step 4: Take max in each cell

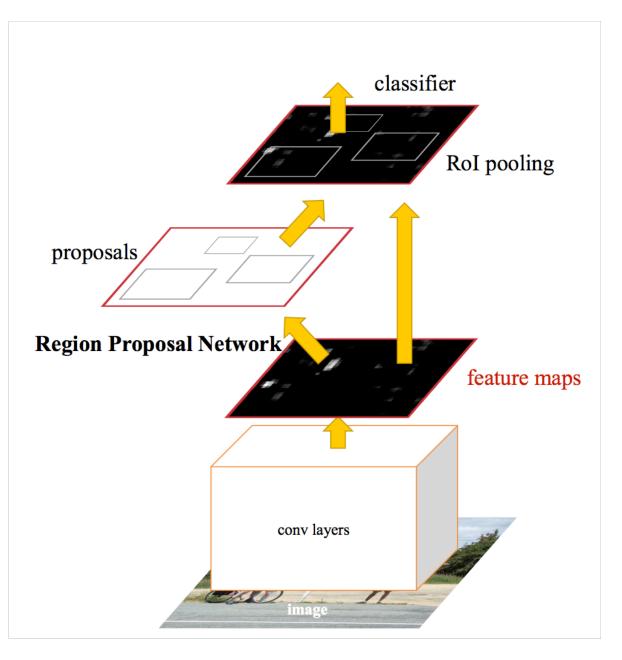


	Fast R-CNN	R-CNN
Train time (h)	9.5	84
Speedup	8.8x	1x
Test time / image	0.32s	47.0s
Speedup	146x	1x
mean AP	66.9	66.0

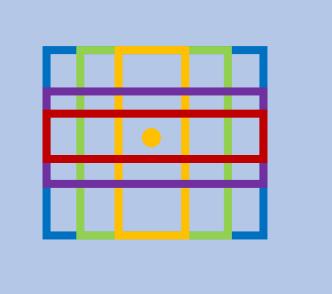
- Bottleneck remaining (not included in time):
 - Object proposal generation
- Slow
 - Requires segmentation
 - O(1s) per image

- Can we produce *object proposals* from convolutional networks?
- A change in intuition
 - Instead of using grouping
 - Recognize likely objects?
- For every possible box, score if it is likely to correspond to an object
- Cascade

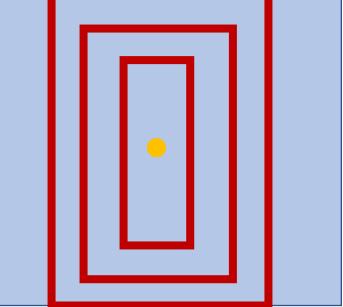
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. S. Ren, K. He, R. Girshick, J. Sun. In *NIPS* 2015.



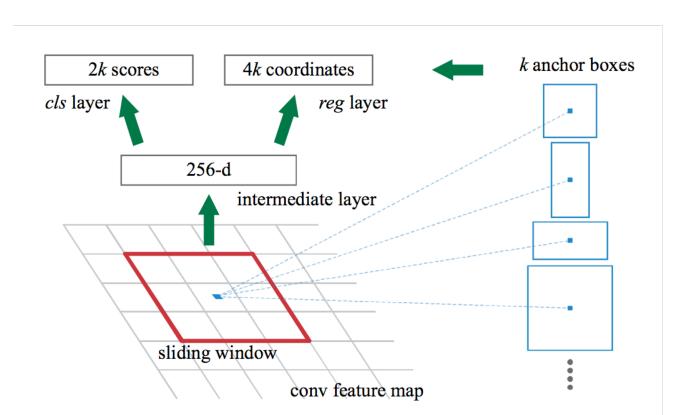
- At each location, consider boxes of many different sizes and aspect ratios
- If k such sizes, use simple convolutional layer to output k "objectness scores"



- At each location, consider boxes of many different sizes and aspect ratios
- If k such sizes, use simple convolutional layer to output k "objectness scores"



- At each location, consider boxes of many different sizes and aspect ratios
- Produce scores for each box using a convolution
- Also produce regressed coordinates using another convolution



- *s* scales $\times a$ aspect ratios = *sa* anchor boxes
- Use convolutional layer on top of filter map to produce *sa* scores
- Another convolution to produce 4sa bounding box offsets
- Pick top few boxes as proposals

Method	mean AP (PASCAL VOC)
Fast R-CNN	65.7
Faster R-CNN	67.0

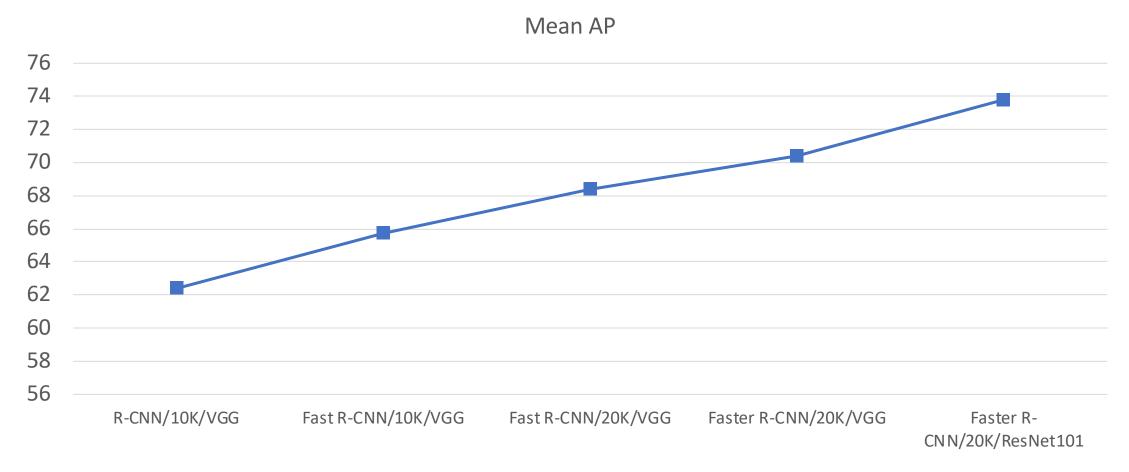
Impact of Feature Extractors

ConvNet	mean AP (PASCAL VOC)
VGG	70.4
ResNet 101	73.8

Impact of Additional Data

Method	Training data	mean AP (PASCAL VOC 2012 Test)
Fast R-CNN	VOC 12 Train (10K)	65.7
Fast R-CNN	VOC07 Trainval + VOC 12 Train	68.4
Faster R-CNN	VOC 12 Train (10K)	67.0
Faster R-CNN	VOC07 Trainval + VOC 12 Train	70.4

The R-CNN family of detectors



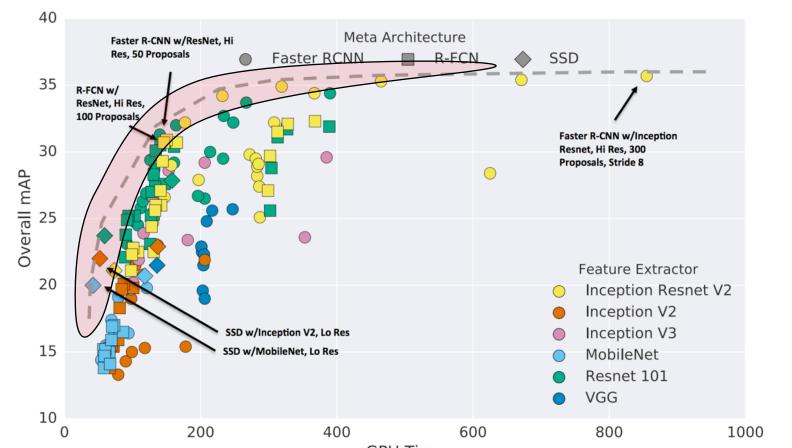
Mean AP

SSD (Single Shot Detector)

- Why go through separate proposals?
- Directly produce class-specific scores at each location for every scale and aspect ratio
 - s scales * a aspects * c classes = sac scores per location

SSD: Single Shot MultiBox Detector. Wei Liu , Dragomir Anguelov , Dumitru Erhan , Christian Szegedy , Scott Reed , Cheng-Yang Fu , Alexander C. Berg. In ECCV, 2016

A comprehensive evaluation



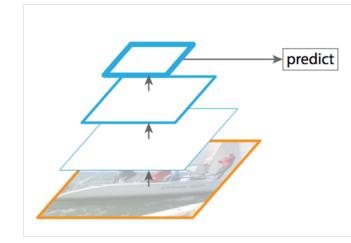
Speed and accuracy trade-offs for modern convolutional object detectors

Alireza Fathi, Anoop Korattikara, Chen Sun, Ian Fischer, Jonathan Huang, Kevin Murphy, Menglong Zhu, Sergio Guadarrama, Vivek Rathod, Yang Song, Zbigniew Wojna CVPR 2017

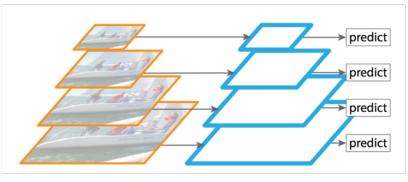
Detecting small objects

Small objects get low resolution features

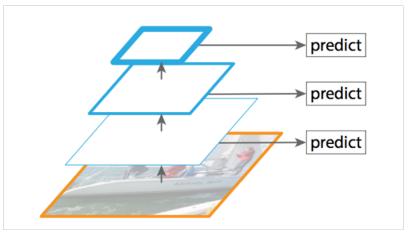
Feature pyramid networks



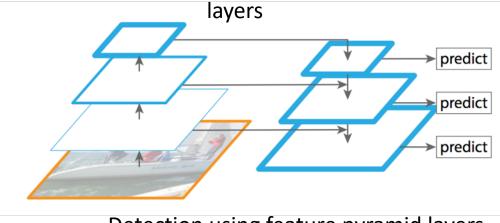
Standard detection



Detection on image pyramid



Detection using multiple



Detection using feature pyramid layers

Lin, Tsung-Yi, et al. "Feature Pyramid Networks for Object Detection." CVPR. Vol. 1. No. 2. 2017.

Feature pyramid networks

Faster R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP _s	AP_m	AP _l
(*) baseline from He <i>et al.</i> $[16]^{\dagger}$	RPN, C_4	C_4	conv5			47.3	26.3	-	-	-
(a) baseline on conv4	RPN, C_4	C_4	conv5			53.1	31.6	13.2	35.6	47.1
(b) baseline on conv5	RPN, C_5	C_5	2fc			51.7	28.0	9.6	31.9	43.1
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	\checkmark	\checkmark	56.9	33.9	17.8	37.7	45.8

Lin, Tsung-Yi, et al. "Feature Pyramid Networks for Object Detection." CVPR. Vol. 1. No. 2. 2017.

Other details - Non-max suppression

Non-max suppression

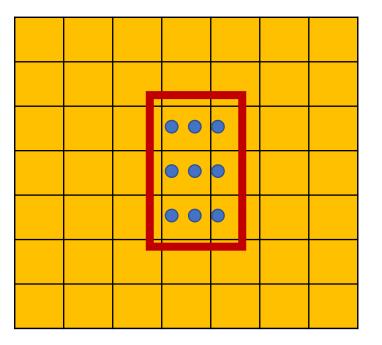
- Might find the same object with different sized-boxes and different scales
- But must fire exactly once on each object
- Idea: if two detections overlap significantly (>50% IoU), drop lower scoring one

Other details - Non-max suppression

- Go down the list of detections starting from highest scoring
- Eliminate any detection that overlaps highly with a higher scoring detection
- Separate, heuristic step

Other details - ROI Align

- Snapping box to grid introduces quantization artifacts
- Instead, use bilinear interpolation



Mask R-CNN. K. He, G. Gkioxari, P. Dollar, R. Girshick. In ICCV 2017.