
Multilayer perceptrons

• Key idea: build complex functions by composing simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) = 
max(x,0)

g(x) = 
max(x,0)



Multilayer perceptrons

• Key idea: build complex functions by composing simple functions
• Caveat: simple functions must include non-linearities
• W(U(Vx)) = (WUV)x 



Reducing capacity
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Idea 1: local connectivity

• Inputs and outputs are feature maps
• Pixels only related to nearby pixels



Idea 2: Translation invariance

• Pixels only related to nearby pixels



Local connectivity + translation invariance = 
convolution
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Local connectivity + translation invariance = 
convolution
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Convolution as a primitive
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Invariance to distortions



Invariance to distortions



Invariance to distortions: Pooling

…



Invariance to distortions: Subsampling



Convolution subsampling convolution



Convolution subsampling convolution

• Convolution in earlier steps detects more local patterns less resilient
to distortion
• Convolution in later steps detects more global patterns more resilient 

to distortion
• Subsampling allows capture of larger, more invariant patterns



Convolutional networks

Horse



Convolutional networks

Horse

Visualizations from : M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV 2014.



Convolutional networks

Horse

Visualizations from : M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV 2014.



Vagaries of optimization

• Non-convex
• Local optima
• Sensitivity to initialization

• Vanishing / exploding gradients

• If each term is (much) greater than 1 à explosion of gradients
• If each term is (much) less than 1 à vanishing gradients
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Vanishing and exploding gradients
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Sigmoids cause vanishing gradients

Gradient close to 0



Convolution subsampling convolution

conv + 
non-
linearity subsample

conv + 
non-
linearity



Rectified Linear Unit (ReLU)

• max (x,0)
• Also called half-wave rectification (signal processing)



Image Classification



ImageNet

• 1000 categories
• ~1000 instances per category

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej 
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet Large 
Scale Visual Recognition Challenge. International Journal of Computer Vision, 2015.
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Transfer learning



Transfer learning with convolutional networks

Horse

Trained feature 
extractor !



Transfer learning with convolutional networks
Dataset Non-Convnet

Method
Non-Convnet
perf

Pretrained
convnet + 
classifier

Improvement

Caltech 101 MKL 84.3 87.7 +3.4

VOC 2007 SIFT+FK 61.7 79.7 +18

CUB 200 SIFT+FK 18.8 61.0 +42.2

Aircraft SIFT+FK 61.0 45.0 -16

Cars SIFT+FK 59.2 36.5 -22.7



Why transfer learning?

• Availability of training data

• Computational cost

• Ability to pre-compute feature vectors and use for multiple tasks

• Con: NO end-to-end learning



Finetuning

Horse



Finetuning

Bakery

Initialize with pre-
trained, then train with 

low learning rate



Finetuning
Dataset Non-

Convnet
Method

Non-
Convnet
perf

Pretrained
convnet + 
classifier

Finetuned
convnet

Improvem
ent

Caltech 
101

MKL 84.3 87.7 88.4 +4.1

VOC 2007 SIFT+FK 61.7 79.7 82.4 +20.7

CUB 200 SIFT+FK 18.8 61.0 70.4 +51.6

Aircraft SIFT+FK 61.0 45.0 74.1 +13.1

Cars SIFT+FK 59.2 36.5 79.8 +20.6


