Multilayer perceptrons

- Key idea: build complex functions by composing simple functions

Multilayer perceptrons

- Key idea: build complex functions by composing simple functions
- Caveat: simple functions must include non-linearities
- $W(U(V x))=(W U V) x$

Reducing capacity

Reducing capacity

Idea 1: local connectivity

- Inputs and outputs are feature maps
- Pixels only related to nearby pixels

Idea 2: Translation invariance

- Pixels only related to nearby pixels

Local connectivity + translation invariance = convolution

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Local connectivity + translation invariance = convolution

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Local connectivity + translation invariance $=$ convolution

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

Feature map

Convolution as a primitive

Invariance to distortions

Invariance to distortions

Invariance to distortions: Pooling

Invariance to distortions: Subsampling

Convolution subsampling convolution

Convolution subsampling convolution

- Convolution in earlier steps detects more local patterns less resilient to distortion
- Convolution in later steps detects more global patterns more resilient to distortion
- Subsampling allows capture of larger, more invariant patterns

Convolutional networks

Convolutional networks

Convolutional networks

Vagaries of optimization

- Non-convex
- Local optima
- Sensitivity to initialization
- Vanishing / exploding gradients

$$
\frac{\partial z}{\partial z_{i}}=\frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \ldots \frac{\partial z_{i+1}}{\partial z_{i}}
$$

- If each term is (much) greater than $1 \rightarrow$ explosion of gradients
- If each term is (much) less than $1 \rightarrow$ vanishing gradients

Vanishing and exploding gradients

$$
\begin{gathered}
\frac{\partial \mathbf{z}}{\partial \mathbf{z}_{i}}=\frac{\partial \mathbf{z}}{\partial \mathbf{z}_{n-1}} \frac{\partial \mathbf{z}_{n-1}}{\partial \mathbf{z}_{n-2}} \cdots \frac{\partial \mathbf{z}_{i+1}}{\partial \mathbf{z}_{i}} \\
\frac{\partial L}{\partial \mathbf{z}_{i}}=\frac{\partial L}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{z}_{i}} \\
\lambda_{\min }\left(\frac{\partial \mathbf{z}}{\partial \mathbf{z}_{i}}\right) \frac{\partial L}{\partial \mathbf{z}} \leq \frac{\partial L}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{z}_{i}} \leq \lambda_{\max }\left(\frac{\partial \mathbf{z}}{\partial \mathbf{z}_{i}}\right) \frac{\partial L}{\partial \mathbf{z}} \\
\lambda_{\max }(U V) \leq \lambda_{\max }(U) \lambda_{\max }(V) \\
\lambda_{\min }(U V) \geq \lambda_{\min }(U) \lambda_{\min }(V) \\
\lambda_{\max }\left(A^{n}\right)=\lambda_{\max }(A)^{n} \\
\lambda_{\min }\left(A^{n}\right)=\lambda_{\min }(A)^{n}
\end{gathered}
$$

Sigmoids cause vanishing gradients

Convolution subsampling convolution

Rectified Linear Unit (ReLU)

- max (x,0)
- Also called half-wave rectification (signal processing)

Image Classification

ImageNet

- 1000 categories
 - ~1000 instances per category

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 2015.

Challenge winner's accuracy

Transfer learning

Transfer learning with convolutional networks

Transfer learning with convolutional networks

Dataset	Non-Convnet Method	Non-Convnet perf	Pretrained convnet + classifier	Improvement
Caltech 101	MKL	84.3	87.7	+3.4
VOC 2007	SIFT+FK	61.7	79.7	+18
CUB 200	SIFT+FK	18.8	61.0	+42.2
Aircraft	SIFT+FK	61.0	45.0	-16
Cars	SIFT+FK	59.2	36.5	-22.7

Why transfer learning?

- Availability of training data
- Computational cost
- Ability to pre-compute feature vectors and use for multiple tasks
- Con: NO end-to-end learning

Finetuning

Finetuning

Finetuning

Dataset	Non- Convnet Method	Non- Convnet perf	Pretrained convnet + classifier	Finetuned convnet	Improvem ent
Caltech 101	MKL	84.3	87.7	88.4	+4.1
VOC 2007	SIFT+FK	61.7	79.7	82.4	+20.7
CUB 200	SIFT+FK	18.8	61.0	70.4	+51.6
Aircraft	SIFT+FK	61.0	45.0	74.1	+13.1
Cars	SIFT+FK	59.2	36.5	79.8	+20.6

