Intro to ML



Image classification

* Given an image, produce a label

* Label can be:
* 0/1 or yes/no: Binary classification
* one-of-k: Multiclass classification
* 0/1 for each of k concepts: Multilabel classification



MNIST

* 2D

* 6000 examples per class

10 classes
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e * 101 classes

* 10 classes

* 30 examples per class
 Strong category-specific biases
* Clean images
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PASCAL VOC

e 20 classes
* ~500 examples per class

e Clutter, occlusion, natural
scenes
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ImageNet

e 1000 classes

e ~1000 examples per class

 Mix of cluttered and clean

Images
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Why is recognition hard?




Learning

* Key idea: teach computer visual concepts by providing examples

X :Images
Y :Labels
D :Distribution over X x Y

Training S: {(wzayz) ND,Z: 17"'7n}

Set




Example

 Binary classifier “Dog” or “not Dog”
e Labels: {0, 1}
* Training set




Learning

* Key idea: teach computer visual concepts by providing examples

S={(x;,y;) ~D,i=1,...,n}

* Want to be able to estimate label y for new images x
* Want to give score s(y, x) for each possible label y, then pick highest scoring
* Want to estimate y(x)
* Want to estimate P(y|x), then pick most likely



Choosing a model class

* Will estimate a probability P(y | x)

* Any function that takes x as input and outputs probability distribution
ch: X — C|y| where C?% is a probability distribution over d classes
* Very large set of possibilities for h

e Constrain choice: Choose a family of possible functions H
* Hypothesis class



Hypothesis class |: Classical models

* Choose h to be a linear classifier over some feature space

* First extract features: z = ¢(x)

* ¢ is a fixed, hand-crafted function that converts images into features useful
for recognition: ¢: X’ - R%

* Next multiply by a weight matrix to produce class scores: s = Wz
W is unknown a priori

* Next normalize scores to a probability
 P(y = k|x) x ek
e “Softmax”



Hypothesis class |: Classical models

* h(x; W) = softmax(W¢(x))

* For different settings of W, get different hypotheses

» Hypothesis class H = {h(-; W); W € RIYI* 4}

W are parameters: index hypotheses in hypothesis class

f3(s)

= softmax(s)



Choice of feature extractor?

* SIFT, HOG, GIST, BOW....
* The rest of the pipeline is very simple: linear function + softmax

* So heavy lifting must be done by feature extractor

e But how do we design feature extractor?



SIFT

 SIFT itself a series of simple, fixed steps
* Make some of them parametric?

Compute

Compute magnitude Quantize

Histogram

gradients and and bin

orientation




Hypothesis class 2: Multilayer perceptrons

* Key idea: build complex functions by composing many simple functions

_ g(x) = _ g(x) = _ f3(s)
f(X)_WX » » f(X)_WX » » »




General recipe

* Fix hypothesis class
* hy,(x) = softmax (f3(f2 (g(f1(X» W1))»W2)»W3))
* h,,(x) = softmax (Wc,b(x))
e Define loss function
* L(hy,(x;),y;) = —log py, (x;)
* Minimize average (or total) loss on the training set

mm—ZL i)

e How do we minimize?
* Why should this work?



Training: Choosing the best hypothesis

* Need to minimize an objective function.
* In general, optimization problem.
* If Lis differentiable and h is differentiable: can do gradient descent

mm—ZL i )



Training = Optimization

* Simple solution: gradient descent

m“i’n f(w)

w(t D = w® _ v F(w®)



Stochastic gradient descent

1 L .
_ - Z L(hw (i), y) Objective function
— % Y VwL(hw(x;),y;) Gradient
w (W) =< VDl (i), ) > Cradient = verage o per example
Vwf(W) = VwL(hw(z;),y;) Stochastic gradient descent using single
5 examples
| ZV w(Ti ), ;) Stochastic gradient descent using

minibatch



Stochastic gradient descent

 Randomly sample small subset of examples

* Compute gradient on small subset
* Unbiased estimate of true gradient

* Take step along estimated gradient



Computing derivatives
wa(W) ~ VWL(hw(xi)a yz)

* How do we compute gradient?

 Composition of functions: use chain rule
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The gradient of convnets

Backpropagation



Risk

* Given:
e Distribution D

* A hypothesis h € H
e Loss function L

* We are interested in Expected Risk:

R(h) — 4:($,y)NDL(h(‘T)7y)

* Given training set S, and a particular hypothesis h, Empirical Risk:

R(S,h) = Z L(h(z),y)

(w,y)ES




Risk
R(h) = 43(x,y)NDL(h($)ay) R( Z L

* By central limit theorem, (xay)és
G Pn R(S, h) — R(h)

* Variance proportional to 1/n

* For randomly chosen h, empirical risk is an unbiased estimator of
expected risk



Risk

* Empirical risk unbiased estimate of expected risk
* Want to minimize expected risk

* |dea: Minimize empirical risk instead

* This is the Empirical Risk Minimization Principle

R(h) =By ~pL(h(z),y)  R(S,h)= Z L(h
(a:,y)ES

h* = arg }rlxéllg R(S, h)




Generalization

R(h) — <1z(ac,y)NDL(h(x)7y) Z L

(:B y)ES

R(h) = R(S,h) + (R(h) — R(S, h))

Training Generalization
error error



Overfitting

* We are minimizing training error

e Empirical risk of chosen hypothesis no longer unbiased estimate:
* We chose hypothesis based on S

* Might have chosen h for which S is a special case
e OQverfitting:
* Minimize training error, but generalization error increases



Controlling generalization error

* Variance of empirical risk inversely proportional to size of S
* Choose very large S!

* Larger the hypothesis class H, Higher the chance of hitting bad
hypotheses with low training error and high generalization error

* Choose small H!

* For many models, can bound generalization error using some
property of parameters
* Regularize during optimization!
* Eg. L2 regularization



Controlling generalization error

* How do we know we are overfitting?
* Use a held-out “validation set”
* To be an unbiased sample, must be completely unseen



Putting it all together

 Want model with least expected risk = expected loss

* But expected risk hard to evaluate

* Empirical Risk Minimization: minimize empirical risk in training set
* Might end up picking special case: overfitting

* Avoid overfitting by:
e Constructing large training sets
* Reducing size of model class
* Regularization



Putting it all together

* Collect training set and validation set

* Pick hypothesis class

* Pick loss function

* Minimize empirical risk (+ regularization)

* Measure performance on held-out validation set
* Profit!



Loss functions and hypothesis classes

Loss function Problem Range of h Yy Formula
Log loss Binary Classification R {0,1} log(1 + e~ ¥h(=)
Negative log likelihood Multiclass classification 0, 1]% {1,...,k} — log hy ()
Hinge loss Binary Classification R {0,1} max (0,1 — yh(z))

MSE Regression R R (y — h(x))?




Discussion



