
Intro to ML

Image classification

• Given an image, produce a label
• Label can be:
• 0/1 or yes/no: Binary classification
• one-of-k: Multiclass classification
• 0/1 for each of k concepts: Multilabel classification

MNIST

• 2D
• 10 classes
• 6000 examples per class

1990’s

Caltech 101

• 101 classes
• 10 classes
• 30 examples per class
• Strong category-specific biases
• Clean images

1990’s

MNIST

2004

PASCAL VOC

• 20 classes
• ~500 examples per class
• Clutter, occlusion, natural

scenes

1990’s

MNIST

2004

Caltech 101

2007-2012

ImageNet

• 1000 classes
• ~1000 examples per class
• Mix of cluttered and clean

images

1990’s

MNIST

2004

Caltech 101

2007-2013

PASCAL VOC

2013-2017

Why is recognition hard?

Pose
/arti

culat
ion

Scale

Lighting

Clutter/

occlusion

Learning

• Key idea: teach computer visual concepts by providing examples

X :Images

Y :Labels

D :Distribution over X ⇥ Y

S = {(xi, yi) ⇠ D, i = 1, . . . , n}Training
Set

Example

• Binary classifier “Dog” or ”not Dog”
• Labels: {0, 1}
• Training set

, 1), , 1), , 0) , … }{(((

Learning

• Key idea: teach computer visual concepts by providing examples

• Want to be able to estimate label ! for new images "
• Want to give score #(!, ") for each possible label !, then pick highest scoring
• Want to estimate ! "
• Want to estimate '(!|"), then pick most likely

S = {(xi, yi) ⇠ D, i = 1, . . . , n}

Choosing a model class

• Will estimate a probability P(y | x)
• Any function that takes x as input and outputs probability distribution
• where !" is a probability distribution over d classes
• Very large set of possibilities for h

• Constrain choice: Choose a family of possible functions #
• Hypothesis class

Hypothesis class I: Classical models

• Choose h to be a linear classifier over some feature space
• First extract features: ! = # $
• # is a fixed, hand-crafted function that converts images into features useful

for recognition: #:& → ℝ)
• Next multiply by a weight matrix to produce class scores: * = +!
• + is unknown a priori

• Next normalize scores to a probability
• , - = . $ ∝ 012
• “Softmax”

Hypothesis class I: Classical models

• ℎ ";$ = softmax($. ")
• For different settings of W, get different hypotheses
• Hypothesis class 0 = ℎ ⋅;$;$ ∈ ℝ|5| × 7
• W are parameters: index hypotheses in hypothesis class

89 "
= .(")

8: ;
= $;

8< =
= softmax(=)

Choice of feature extractor?

• SIFT, HOG, GIST, BOW….
• The rest of the pipeline is very simple: linear function + softmax
• So heavy lifting must be done by feature extractor
• But how do we design feature extractor?

SIFT

• SIFT itself a series of simple, fixed steps
• Make some of them parametric?

Compute
gradients

Compute
magnitude

and
orientation

Quantize
and bin Histogram

Hypothesis class 2: Multilayer perceptrons

• Key idea: build complex functions by composing many simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) =
max(x,0)

g(x) =
max(x,0)

!" #
= softmax(#)

General recipe

• Fix hypothesis class
• ℎ" # = softmax ,- ,. / ,0 x,w0 ,w. ,w-
• ℎ" # = softmax 34 #

• Define loss function
• 5 ℎ" #6 , 76 = −log ;<=(#6)

• Minimize average (or total) loss on the training set

• How do we minimize?
• Why should this work?

Training: Choosing the best hypothesis

• Need to minimize an objective function.
• In general, optimization problem.
• If L is differentiable and h is differentiable: can do gradient descent

Training = Optimization

• Simple solution: gradient descent

min
w

f(w)

w(t+1) = w(t) � ↵rwf(w(t))

Stochastic gradient descent
f(w) =

1

n

X

i

L(hw(xi), yi)

rwf(w) =
1

n

X

i

rwL(hw(xi), yi)

rwf(w) =< rwL(hw(xi), yi) >

Objective function

Gradient

Gradient = average of per example
gradients

Stochastic gradient descent using single
examples

Stochastic gradient descent using
minibatch

Stochastic gradient descent

• Randomly sample small subset of examples
• Compute gradient on small subset
• Unbiased estimate of true gradient

• Take step along estimated gradient

Computing derivatives

• How do we compute gradient?
• Composition of functions: use chain rule

The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5

z
1

z
2

z
3

z
4

z5 = z

Risk

• Given:
• Distribution
• A hypothesis
• Loss function L

• We are interested in Expected Risk:

• Given training set S, and a particular hypothesis h, Empirical Risk:

D
h 2 H

R(h) = E(x,y)⇠DL(h(x), y)

R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Risk

• By central limit theorem,

• Variance proportional to 1/n

• For randomly chosen h, empirical risk is an unbiased estimator of
expected risk

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

ES⇠DnR̂(S, h) = R(h)

Risk

• Empirical risk unbiased estimate of expected risk
• Want to minimize expected risk
• Idea: Minimize empirical risk instead
• This is the Empirical Risk Minimization Principle

h⇤ = arg min
h2H

R̂(S, h)

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Generalization

R(h) = R̂(S, h) + (R(h)� R̂(S, h))

Training
error

Generalization
error

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

Overfitting

• We are minimizing training error
• Empirical risk of chosen hypothesis no longer unbiased estimate:
• We chose hypothesis based on S
• Might have chosen h for which S is a special case

• Overfitting:
• Minimize training error, but generalization error increases

Controlling generalization error

• Variance of empirical risk inversely proportional to size of S
• Choose very large S!

• Larger the hypothesis class H, Higher the chance of hitting bad
hypotheses with low training error and high generalization error
• Choose small H!

• For many models, can bound generalization error using some
property of parameters
• Regularize during optimization!
• Eg. L2 regularization

Controlling generalization error

• How do we know we are overfitting?
• Use a held-out “validation set”
• To be an unbiased sample, must be completely unseen

Putting it all together

• Want model with least expected risk = expected loss
• But expected risk hard to evaluate
• Empirical Risk Minimization: minimize empirical risk in training set
• Might end up picking special case: overfitting
• Avoid overfitting by:
• Constructing large training sets
• Reducing size of model class
• Regularization

Putting it all together

• Collect training set and validation set
• Pick hypothesis class
• Pick loss function
• Minimize empirical risk (+ regularization)
• Measure performance on held-out validation set
• Profit!

Loss functions and hypothesis classes

Discussion

