
Grouping



What is grouping?



Regions        Boundaries 



Why grouping?

• Pixels property of sensor, not world
• Reasoning at object level (might) make things easy:
• objects at consistent depth
• objects can be recognized
• objects move as one



The gradient points in the direction of most rapid increase in intensity

Image gradient
• The gradient of an image: 

The edge strength is given by the gradient magnitude:

The gradient direction is given by:

• how does this relate to the direction of the edge?
Source: Steve Seitz



Gradient magnitude and orientation
• Orientation is undefined at pixels with 0 gradient

Orientation
theta = numpy.arctan2(gy, gx)

MagnitudeImage



Non-maximum suppression for each 
orientation

At q, we have a 
maximum if the value 
is larger than those at 
both p and at r. 
Interpolate to get 
these values.

Source: D. Forsyth



Before Non-max Suppression



After Non-max Suppression



Image gradients are not enough

Hard-to-detect low 
contrast boundaries

Strong internal 
image graadients



Image gradients are not enough

Polka 
dots

Plain

“Texture”



What is texture?

Same thing repeated over and over



What is texture?



Julesz’s texton theory

• What is texture?
• Distributions of some elements
• Elongated blobs of specific orientations, widths, lengths
• Terminators (ends of line segments)
• Crossings of line segments

Textons



Bringing textons to computer vision

• Define a “vocabulary” of textons
• Describe texture by a distribution of different textons



Bringing textons to computer vision

• Define a “vocabulary” of textons
• Describe texture by a distribution of different textons

Convolve with filter bank
Filter 

responses



Bringing textons to computer vision

• Define a “vocabulary” of textons
• Describe texture by a distribution of different textons

Convolve with 
filter bank Filter 

responses

Filter 
responses

Convolve with 
filter bank

… Collection of 
pixel feature 

vectors 



Bringing textons to computer vision

• Define a “vocabulary” of textons
• Describe texture by a distribution of different textons

Collection of 
pixel feature 

vectors 
k-means Textons



Bringing textons to computer vision

• Define a “vocabulary” of textons
• Describe texture by a distribution of different textons

Textons

Histogram

Leung, Thomas, and Jitendra Malik. "Representing and recognizing the visual appearance of materials using three-
dimensional textons." International journal of computer vision 43.1 (2001): 29-44.



Textons in computer vision

Convolve with 
filter bank

Assign to k-
means centers

Compute 
histogramImage

Convolution Point-wise non-
linearity Avg poolingImage



Detecting texture boundaries

• Problem: gradient captures change from pixel to pixel
• But texture property of region
• Take region around pixel and 

divide into two halves based 
on hypothetical orientation

Martin, David R., Charless C. Fowlkes, and Jitendra Malik. "Learning to detect natural image boundaries using local 
brightness, color, and texture cues." TPAMI (2004).



Cue combination

Image
Boundary Cues

Pb

Brightness

Color

Texture

Average

Martin, David R., Charless C. Fowlkes, and Jitendra Malik. "Learning to detect natural image boundaries using local 
brightness, color, and texture cues." TPAMI (2004).



Local computation not enough



Local computation is not enough

• Key constraints:
• Boundaries are continuous
• They enclose a region

• How do we go from local, patchy 
contours to boundaries?



Grouping by clustering

• Idea: embed pixels into 
high-dimensional space 
(e.g. 3-dimensions)
• Each pixel is a point
• Group together points



K-means

• Assumption: each group is a Gaussian with different means and same 
standard deviation

• Suppose we know all !". Which group should a point #$ belong to?
• The j with highest % #$ !")
• = The j with smallest ||#$ − !"||)

P (xi|µj) / e�
1

2�2 kxi�µjk2



K-means

• Problem: means are not known
• What if we know a set of points from each cluster?
• belong to cluster k
• What should be !"?
xk1 , xk2 , . . . , xkn

µk =
(xk1 + xk2 + . . .+ xkn)

n



K-means

• Given means, can assign points to clusters
• Given assignments, can compute means
• Idea: iterate!



K-means

• Step-1 : randomly pick k centers



K-means

• Step 2: Assign each point to nearest center



K-means

• Step 3: re-estimate centers



K-means

• Step 4: Repeat



K-means

• Step 4: Repeat



K-means

• Step 4: Repeat



K-means on image pixels



K-means on image pixels

Picture courtesy David 
Forsyth

One of the clusters from k-
means



K-means on image pixels+position

• Groups pixels together, but does not produce compact regions



Segmentation is graph partitioning



Segmentation is graph partitioning

• Every partition “cuts” some edges
• Idea: minimize total weight of edges cut!



Criterion: Min-cut?

• Min-cut carves out small isolated parts of the graph
• In image segmentation: individual pixels



Normalized cuts

• “Cut” = total weight of cut edges
• Small cut means the groups don’t “like” each other
• But need to normalize w.r.t how much they like themselves
• “Volume” of a subgraph = total weight of edges within the subgraph



Normalized cut

!"#(%, %̅)
)*+(%) + !"#(%, %̅)

)*+(%̅)



Min-cut vs normalized cut

• Both rely on interpreting images as graphs
• By itself, min-cut gives small isolated pixels
• But can work if we add other constraints

• min-cut can be solved in polynomial time
• Dual of max-flow

• N-cut is NP-hard
• But approximations exist!



Graphs and matrices

• w(i,j) = weight between i and j (Affinity matrix)
• d(i) = degree of i =∑" #(%, ')
• D = diagonal matrix with d(i) on diagonal

W DN

N N

N
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Graphs and matrices

• How do we represent a clustering?
• A label for N nodes
• 1 if part of cluster A, 0 otherwise

• An N-dimensional vector!
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Graphs and matrices
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Graphs and matrices

• How do we represent a clustering?
• A label for N nodes
• 1 if part of cluster A, 0 otherwise

• An N-dimensional vector!
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Graphs and matrices
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Graphs and matrices
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Graphs and matrices
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Graphs and matrices
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Graphs and matrices

D�1Wy ⇡ y
y = D� 1

2 z

D�1WD� 1
2 z ⇡ D� 1

2 z

) D� 1
2WD� 1

2 z ⇡ z

Define z so that

) (I �D� 1
2WD� 1

2 )z ⇡ 0



Graphs and matrices
) (I �D� 1

2WD� 1
2 )z ⇡ 0

) Lz ⇡ 0

L = I �D� 1
2WD� 1

2

is called the 
Normalized Graph 

Laplacian



Graphs and matrices

• We want
• Trivial solution: all nodes of graph in one cluster, 

nothing in the other
• To avoid trivial solution, look for the eigenvector 

with the second smallest eigenvalue

• Find z s.t.

L = I �D� 1
2WD� 1

2

Lz ⇡ 0

Lz = �z
�1 < �2 < . . . < �N

Lz = �2z



Normalized cuts

• Approximate solution to normalized cuts
• Construct matrix W and D
• Construct normalized graph laplacian

• Look for the second smallest eigenvector

• Compute
• Threshold y to get clusters
• Ideally, sweep threshold to get lowest N-cut value

L = I �D� 1
2WD� 1

2

Lz = �2z
y = D� 1

2 z



Eigenvectors of images

• The eigenvector has as many components as pixels in the image



Eigenvectors of images

• The eigenvector has as many components as pixels in the image



Another example

2nd eigenvector 3rd eigenvector 4th eigenvector



Eigenvectors of images



How do we group things?

• Gestalt principles
• Principle of proximity

https://courses.lumenlearning.com/wsu-sandbox/chapter/gestalt-principles-of-perception/



How do we group things?

• Gestalt principles
• Principle of similarity

https://courses.lumenlearning.com/wsu-sandbox/chapter/gestalt-principles-of-perception/



How do we group things?

• Gestalt principles
• Principle of continuity and closure

https://courses.lumenlearning.com/wsu-sandbox/chapter/gestalt-principles-of-perception/



How do we group things?

• Gestalt principles
• Principle of common fate



Gestalt principles in the context of images

• Principle of proximity: nearby pixels are part of the same object
• Principle of similarity: similar pixels are part of the same object
• Look for differences in color, intensity, or texture across the boundary

• Principle of closure and continuity: contours are likely to continue
• High-level knowledge?


