lmage processing

Today

* Consequences of image formation

* Some basic primitives needed for computer vision
problems

* Edge detection
* I[mage resizing

* Convolution as a basic operation

* Image pyramids as a basic structure

Recap
* Geometry: iingK [R t] Xw

e Color (Lambertian assumptipn):
I(Ximg) = p(}"{’w)/L(féw,Q) cos 0(X,,, £2)dS2

¥ e

Consequences of image formation

* Nearby objects appear larger
* Parallel lines and planes converge
* Information lost: distance from camera

* Pixel color depends on light intensity, light direction
and surface normal and paint on object

* So objects in images
* can appear in many different sizes and many positions
e can have very different color

Consequence 1: nearby pixels are
similar

Consequence 1: nearby pixels are
similar

e Why?

Nearby pixels in pinhole camera lead to nearby rays

Nearby rays mostly fall on the same object

Objects have mostly smooth surfaces and mostly uniform color
Lighting is mostly uniform

Consequence 1: nearby pixels are
similar

* Nearby pixels that are not similar tend to have different
depth, surface normal, paint or lighting

* Idea: Abrupt changes in color can delineate objects, be a
clue to shape, or be distinctive marks

Ao 0 ~ G o i AT T TR A R L L 7
Depth discontinuities Changes in albedo

Normal
discontinuities

Key primitive: edge detection

Consequence 2: Farther away
objects appear smaller

Key primitive: Image resizing

* May need to match
objects/patches across

Some primitives

* Edge detection: identifying where pixels change
color
* Cue to object boundary
* Cue to shape
* More resilient to lighting than pixel color

* Image resizing: downsizing or upscaling images
* Allows searching over scales

* Basic operation: convolution

Convolution

Image denoising

What is an image?

* A grid (matrix) of intensity values: 1 color or 3 colors

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

20

255

255

255

255

255

255

255

255

255

255

75

75

75

255

255

255

255

255

255

255

255

75

95

95

75

255

255

255

255

255

255

255

255

96

127

145

175

255

255

255

255

255

255

255

255

127

145

175

175

175

255

255

255

255

255

255

255

127

145

200

200

175

175

95

255

255

255

255

255

127

145

200

200

175

175

95

47

255

255

255

255

127

145

145

175

127

127

95

47

255

255

255

255

74

127

127

127

95

95

95

47

255

255

255

255

255

74

74

74

74

74

74

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

Mean filtering: replace pixel by
mean of neighborhood

(0O+0+0+10+40+0+10+0+0)/9=6.66

iNg mean

Noise reduction us

filter

ing

A more general version

0 10 5 7 0
5 11 6 8 3
9 22 4 5 1 q 7
2 9 14 6 7

3 10 15 12 9

Local image data

Kernel size = 2k+1

k k
SifImon) =Y > w(i,j)f(m+i,n+ j)

i=—k j=—k

Convolution and cross-correlation

* Cross correlation

Sifl=wef

SifImon) =Y > w(i,j)f(m+i,n+j)

i=—k i=—%k
 Convolution J

s:f:—w*f k

S[f1(m Z > w(iy) f(m —in—j)

1=—k j=—k

Convolution

_e,
F-E

P

—

Adapted from F. Durand

Properties: Linearity

(w® f)(m,n) Z szg (m+i,n+j)

1=—k j=—k

f'=af +bg
w® f=alw®)+ blwx g)

Properties: Linearity

(w® f)(m,n) Z szg (m+i,n+j)

1=—k j=—k
w' = aw + bv
w @ f=alw® f)+bve f)

Properties: Shift invariance

(w® f)(m,n) = .Z Z w(i,) f(m+i,n+j)

f'(m,n) = f(m —mo,n — no)

Shift invariance

(w® f)(m,n) ZZ’UJ’LJ (m—+1t,n+7)

1=—k j=—k

f'(m,n) = f(m —mo,n — no)

Shift inyariance
f'(m,n) = f(m — mg,n — ng)

/
(w® f)(m,n) = (w f)(m —my,n —nop)
* Shift, then convolve = convolve, then shift
* Convolution does not depend on where the pixel is

Why is convolution important?

 Shift invariance is a crucial property

Why is convolution important?

* We like linearity
* Linear functions behave predictably when input changes
* Lots of theory just easier with linear functions

* All linear shift-invariant systems can be expressed
as a convolution

* Basic primitive in computer vision

lmage resizing

Why is resizing hard?

* E.g, consider reducing size by a factor of 2
e Simple solution: subsampling

* Example: subsampling by a factor of 2

Why is resizing hard?

* Dropping pixels causes problems

| |

Aliasing in time

o) 0:00/0:11

Aliasing in time

\

-0
4

:

7-17-2817 10: 1Fﬁ6

> > o) 000/0:11

Why does aliasing happen?

* We "miss” things between samples

* High frequency signals might appear as low
frequency signals

* Called “aliasing”

What about the general case?

e Every signal (doesn’t matter what it is)
* Sum of sine/cosine waves
e Fourier transform

Fourier transform

* Represent each signal as a linear combination of
sines and cosines

* Equivalent to a change of basis

* Fourier transform = representation of signal in
Fourier basis

Fourier transform for images

* Images are 2D arrays

* Fourier basis elements are indexed by 2 spatial
frequencies

* (i,j)th Fourier basis for N x N image
* Has period N/i along x

* Has period N/j alongy
27tikx+2nily
.Bk,l(x'y)ze N N
(anx N any) +isin(
= COS L SIN
N N

2mkx N 21ly
N N)

Visualizing the Fourier basis for
Images

0 20

B4
0 ' 0
20 20
40
40
60
60
80
' 80
o 20 an a0 ’0
0 0
20 20
40 40
60 60
80 80
0 20 40 60 80
Bo,o

40 60
BlO,l

Visualizing the Fourier transform

* Given NxN image, there are NxN basis elements

* Fourier coefficients can be represented as an NxN

image

300

400 &8

500 g

700

900

-450

-350

-250

-150

High

- o @ frequency

in X

150
250

350

450
-600 -400 -200 0 200 400 600

Aliasing

| |

Aliasing

* Image = linear combination of high frequency and
low frequency components

e Subsampling: high frequency components alias as
low frequency

* First smooth the image to remove high frequency
components

e How should we smooth?
* Mean filtering?

Convolution and Fourier
transforms

* Image: Spatial domain

* Fourier Transform: Frequency domain
 Amplitudes are called spectrum

* For any transformations we do in spatial domain,
there are corresponding transformations we can
do in the frequency domain

 And vice-versa

Convolution and Fourier
transforms

* Convolution in spatial domain = Point-wise
multiplication in frequency domain
e h = f * g = h(m;n) — Zl]f(l'])g(m - i,n _])
e H=F-G=Hk=Fk1 Gk,

e Convolution in frequency domain = Point-wise
multiplication in spatial domain

Smoothing and Fourier transforms

* Mean filter = convolving with a “box” filter

Fourier
transform

Filter

Subsampling before and after
smoothing

!

Before After

Gaussian
pre-
filtering

e Solution: filter

the image, then
subsample

Gaussian
pyramid

A
; s
(F

blwl', subsample blyl, subsa/n‘mle soe
s

L)

Anti-aliasing circa 2019

: MaxPool Conv AvgPool

Al Max BlurPool Conv . BlurPool BlurPool
Max Pooling Strided-Convolution Average Pooling

Figure 2. Anti-aliasing common downsampling layers. (Top) Max-pooling, strided-convolution, and average-pooling can each be
better antialiased (bottom) with our proposed architectural modification. An example on max-pooling is shown below.

R. Zhang. Making convolutional networks shift-invariant again. In ICML, 2019.

Edge detection

Edges

* Edges are curves in the image, across which the
brightness changes “a lot”

e Corners/Junctions

Closeup of

edges

Closeup of edges

Source: D. Hoiem

Closeup of

edges

Closeup of edges

Source: D. Hoiem

Characterizing edges

e An edge is a place of rapid change in the image
intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
Source: L. Lazebnik extrema of derivative

U.B Ll Ll 1 1 1

0.7 +

1

05F

o

Intensity profile

0.4+

03}

0.2F

A

0.4 T T T T T

03}

0.1 -\

1 1

1 1 1
0 10 = =K Source: D. Hoiem

Derivatives and convolution

e Differentiation is linear

Iaf(z) + bg(@)) _ 0f(x) ,0g(a)

ox ox ox

* Differentiation is shift-invariant
e Derivative of shifted signal is shifted derivative

* Hence, differentiation can be represented as
convolution!

Image derivatives

* How can we differentiate a digital image F[x,y]?

— Option 1: reconstruct a continuous image, f, then
compute the derivative

— Option 2: take discrete derivative (finite difference)

of
x
How would you implement this as a linear filter?
of of.
ox oy

Source: S. Seitz

Image gradient

* The gradient of animage: V f = [g:];’ g]yf]

The gradient points in the direction of most rapid increase in intensity

Vi =5 0] I

o1~
cr-poy B

The edge strength is given by the gradient magnitude:

2 2
VAl = /(D% + ()

of

2
oz’ Oy

The gradient direction is given by:
_ —1(9f ,0f)
0 = tan (Dy / 5

* how does this relate to the direction of the edge?
Source: Steve Seitz

Source: L. Lazebnik

With a little Gaussian noise

D.4 T T I I I

0.3

0.2

0.1

T
1

0 100 200 300 400 500 600

Gradient

Source: D. Hoiem

Effects of noise

f(@)

| 1 1 | | 1 1 | |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Noisy input image , , : : : : . !

L f(z)

i 1 1 l l l 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Source: S. Seitz

Solution: smooth first

Sigma = 50
I I I I I I I I I
[' 5
c 5
h 5 :
X .
......... l““””“l.““””.l'“““.”I““““”l”““““l”““““l.”“““—
600 800 1000 1200 1400 1600 1800 2000
c I I I I I I I I I
ke g
%k b= .
S*h 3 ;
> '
C .
Q :
O 1 1 1 | 1 | 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
c T T T T T T T T T
ke : :
d 3 ' 5
—(fxh) § |
dr & ;
DO_ i i i i i T . 12036005 -

|
0 200 400 600 800 1000 1200 1400 1600 1800 2000

To find edges, look for peaks in %(f x)

Source: S. Seitz

Associative property of convolution

e Differentiation is a convolution
e Convolution is associative: d d

e This saves us one operation:

Sigma = 50
T

0 200 400 600 800 1000 1200 1400 1600 1800 2000 Source: S. Seitz

2D edge detection filters

\;‘
i
(L
TN
L
ey (AT
A,

AOOOAK XA

i
’I/Agll"l ";

{
///’,”l?':%

Gaussian

1 _uz—l—v2
ho(u,v) = ——=e 202

2ro2

;,,'I %

)
X

ST,
S5

(AR
. II"',O‘O\\\\\. =
Y s =5
il S
0
oo R
. 2
= ‘:,’::::.::::: \“::3\"

NG
iy (!
L
RSSO
o‘g:..‘..‘
S3S

GRS
(NSSe5s
SN
A O SN 5455
gnf”ll"l"ob“““\\\\ (A%
rerte 0%
SESSSsess

po
SSe2s

derivative of Gaussian (x)
0
—ho(u,v
ox o)

Derivative of Gaussian filter

2 2

x-direction y-direction

