Image processing

Today

- Consequences of image formation
- Some basic primitives needed for computer vision problems
 - Edge detection
 - Image resizing
- Convolution as a basic operation
- Image pyramids as a basic structure

Recap

 $ec{\mathbf{x}}_w$

- Geometry: $\vec{\mathbf{x}}_{img} \equiv K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$
- Color (Lambertian assumption):

$$I(\vec{\mathbf{x}}_{img}) = \rho(\vec{\mathbf{x}}_w) \int L(\vec{\mathbf{x}}_w, \Omega) \cos \theta(\vec{\mathbf{x}}_w, \Omega) d\Omega$$

Consequences of image formation

- Nearby objects appear larger
- Parallel lines and planes converge
- Information lost: distance from camera
- Pixel color depends on light intensity, light direction and surface normal and paint on object
- So objects in images
 - can appear in many different sizes and many positions
 - can have very different color

Consequence 1: nearby pixels are similar

Consequence 1: nearby pixels are similar

- Why?
- Nearby pixels in pinhole camera lead to nearby rays
- Nearby rays mostly fall on the same object
- Objects have *mostly* smooth surfaces and *mostly* uniform color
- Lighting is *mostly* uniform

Consequence 1: nearby pixels are similar

- Nearby pixels that are *not* similar tend to have different depth, surface normal, paint or lighting
- Idea: Abrupt changes in color can delineate objects, be a clue to shape, or be distinctive marks

Depth discontinuities

Changes in albedo

Normal discontinuities

Key primitive: edge detection

Consequence 2: Farther away objects appear smaller

Key primitive: Image resizing

 May need to match objects/patches across different scales.

Some primitives

- Edge detection: identifying where pixels change color
 - Cue to object boundary
 - Cue to shape
 - More resilient to lighting than pixel color
- Image resizing: downsizing or upscaling images
 - Allows searching over scales
- Basic operation: *convolution*

Convolution

Image denoising

What is an image?

• A grid (matrix) of intensity values: 1 color or 3 colors

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255		95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	1/15	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	233	255	255	255
255	255	127	145	200	200	175	175	95	200	255	255
255	255	127	145	200	200	175	1/5	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

Mean filtering: replace pixel by mean of neighborhood

0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

(0 + 0 + 0 + 10 + 40 + 0 + 10 + 0 + 0)/9 = 6.66

Noise reduction using mean filtering

A more general version

$$S[f](m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(m+i,n+j)$$

Convolution and cross-correlation

• Cross correlation
$$S[f] = w \otimes f$$
$$S[f](m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(m+i,n+j)$$
• Convolution

$$S[f] = w * f$$

$$S[f](m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(m-i,n-j)$$

Convolution

Adapted from F. Durand

Properties: Linearity $(w \otimes f)(m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(m+i,n+j)$

$$f' = af + bg$$
$$w \otimes f' = a(w \otimes f) + b(w \otimes g)$$

Properties: Linearity k $(w \otimes f)(m,n) = \sum \sum w(i,j)f(m+i,n+j)$ $i = -k \ j = -k$ w' = aw + bv $w' \otimes f = a(w \otimes f) + b(v \otimes f)$

Properties: Shift invariance $(w \otimes f)(m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(m+i,n+j)$ $f'(m,n) = f(m-m_0,n-n_0)$

Shift invariance

$$(w \otimes f)(m, n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m+i, n+j)$$

 $f'(m, n) = f(m - m_0, n - n_0)$
 $(w \otimes f')(m, n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f'(m+i, n+j)$
 $= \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i, j) f(m+i - m_0, n+j - n_0)$
 $= (w \otimes f)(m - m_0, n - n_0)$

Shift invariance

$$f'(m,n) = f(m-m_0, n-n_0)$$

 $(w \otimes f')(m,n) = (w \otimes f)(m-m_0, n-n_0)$

- Shift, then convolve = convolve, then shift
- Convolution does not depend on where the pixel is

Why is convolution important?

• Shift invariance is a crucial property

Why is convolution important?

- We *like* linearity
 - Linear functions behave predictably when input changes
 - Lots of theory just easier with linear functions
- All linear shift-invariant systems can be expressed as a convolution
- Basic primitive in computer vision

Image resizing

Why is resizing hard?

- E.g, consider reducing size by a factor of 2
- Simple solution: subsampling
- Example: subsampling by a factor of 2

Why is resizing hard?

• Dropping pixels causes problems

Aliasing in time

Aliasing in time

Why does aliasing happen?

- We "miss" things between samples
- High frequency signals might appear as low frequency signals
- Called "aliasing"

© Kavita Bala, Computer Science, Cornell University

What about the general case?

- Every signal (doesn't matter what it is)
 - Sum of sine/cosine waves
 - Fourier transform

Fourier transform

- Represent each signal as a linear combination of sines and cosines
- Equivalent to a *change of basis*
- Fourier transform = representation of signal in Fourier basis

Fourier transform for images

- Images are 2D arrays
- Fourier basis elements are indexed by 2 spatial frequencies
- (i,j)th Fourier basis for N x N image
 - Has period N/i along x
 - Has period N/j along y

•
$$B_{k,l}(x,y) = e^{\frac{2\pi ikx}{N} + \frac{2\pi ily}{N}}$$

= $\cos\left(\frac{2\pi kx}{N} + \frac{2\pi ly}{N}\right) + i\sin\left(\frac{2\pi kx}{N} + \frac{2\pi ly}{N}\right)$

Visualizing the Fourier basis for images

Visualizing the Fourier transform

- Given NxN image, there are NxN basis elements
- Fourier coefficients can be represented as an NxN image

Aliasing

Aliasing

- Image = linear combination of high frequency and low frequency components
- Subsampling: high frequency components alias as low frequency
- First smooth the image to remove high frequency components
- How should we smooth?
 - Mean filtering?

Convolution and Fourier transforms

- Image: Spatial domain
- Fourier Transform: Frequency domain
 - Amplitudes are called spectrum
- For any transformations we do in spatial domain, there are corresponding transformations we can do in the frequency domain
- And vice-versa

Convolution and Fourier transforms

• *Convolution* in spatial domain = *Point-wise multiplication* in frequency domain

•
$$h = f * g \Rightarrow h(m, n) = \sum_{ij} f(i, j)g(m - i, n - j)$$

•
$$H = F \cdot G \Rightarrow H(k, l) = F(k, l) G(k, l)$$

• *Convolution* in frequency domain = *Point-wise multiplication* in spatial domain

Smoothing and Fourier transforms

• Mean filter = convolving with a "box" filter

Subsampling before and after smoothing

Gaussian prefiltering

 Solution: filter the image, then subsample

Anti-aliasing circa 2019

R. Zhang. Making convolutional networks shift-invariant again. In ICML, 2019.

Edge detection

Edges

- Edges are curves in the image, across which the brightness changes "a lot"
- Corners/Junctions

Source: D. Hoiem

Source: D. Hoiem

Source: D. Hoiem

Characterizing edges

• An edge is a place of *rapid change* in the image intensity function

Intensity profile

Derivatives and convolution

Differentiation is *linear*

$$\frac{\partial (af(x) + bg(x))}{\partial x} = a \frac{\partial f(x)}{\partial x} + b \frac{\partial g(x)}{\partial x}$$

- Differentiation is *shift-invariant*
 - Derivative of shifted signal is shifted derivative
- Hence, differentiation can be represented as convolution!

Image derivatives

- How can we differentiate a *digital* image F[x,y]?
 - Option 1: reconstruct a continuous image, *f*, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

Image gradient

• The *gradient* of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Image gradient

With a little Gaussian noise

Source: D. Hoiem

Effects of noise

Source: S. Seitz

Solution: smooth first

Source: S. Seitz

Associative property of convolution

- Differentiation is a convolution
- Convolution is associative:
- This saves us one operation:

2D edge detection filters

derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian filter

