
Image processing

Today

• Consequences of image formation

• Some basic primitives needed for computer vision
problems
• Edge detection
• Image resizing

• Convolution as a basic operation
• Image pyramids as a basic structure

Recap

• Geometry:

• Color (Lambertian assumptipn):
I(~ximg) = ⇢(~xw)

Z
L(~xw,⌦) cos ✓(~xw,⌦)d⌦

~ximg

~xw

~ximg⌘K
⇥
R t

⇤
~xw

Consequences of image formation

• Nearby objects appear larger
• Parallel lines and planes converge
• Information lost: distance from camera
• Pixel color depends on light intensity, light direction

and surface normal and paint on object
• So objects in images
• can appear in many different sizes and many positions
• can have very different color

Consequence 1: nearby pixels are
similar

Consequence 1: nearby pixels are
similar
• Why?
• Nearby pixels in pinhole camera lead to nearby rays
• Nearby rays mostly fall on the same object
• Objects have mostly smooth surfaces and mostly uniform color
• Lighting is mostly uniform

Consequence 1: nearby pixels are
similar
• Nearby pixels that are not similar tend to have different

depth, surface normal, paint or lighting
• Idea: Abrupt changes in color can delineate objects, be a

clue to shape, or be distinctive marks

Depth discontinuities Changes in albedo
Normal

discontinuities

Key primitive: edge detection

Consequence 2: Farther away
objects appear smaller

Key primitive: Image resizing

• May need to match
objects/patches across
different scales.

Some primitives

• Edge detection: identifying where pixels change
color
• Cue to object boundary
• Cue to shape
• More resilient to lighting than pixel color

• Image resizing: downsizing or upscaling images
• Allows searching over scales

• Basic operation: convolution

Convolution

Image denoising

What is an image?
• A grid (matrix) of intensity values: 1 color or 3 colors

=
255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 20 0 255 255 255 255 255 255 255

255 255 255 75 75 75 255 255 255 255 255 255

255 255 75 95 95 75 255 255 255 255 255 255

255 255 96 127 145 175 255 255 255 255 255 255

255 255 127 145 175 175 175 255 255 255 255 255

255 255 127 145 200 200 175 175 95 255 255 255

255 255 127 145 200 200 175 175 95 47 255 255

255 255 127 145 145 175 127 127 95 47 255 255

255 255 74 127 127 127 95 95 95 47 255 255

255 255 255 74 74 74 74 74 74 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255

Mean filtering: replace pixel by
mean of neighborhood
0 0 0 0 0 0 0 0 0 0

0 0 0 10 10 10 0 0 0 0

0 0 10 20 20 20 10 40 0 0

0 10 20 30 0 20 10 0 0 0

0 10 0 30 40 30 20 10 0 0

0 10 20 30 40 30 20 10 0 0

0 10 20 10 40 30 20 10 0 0

0 10 20 30 30 20 10 0 0 0

0 0 10 20 20 0 10 0 20 0

0 0 0 10 10 10 0 0 0 0

(0 + 0 + 0 + 10 + 40 + 0 + 10 + 0 + 0)/9 = 6.66

Noise reduction using mean
filtering

A more general version

Local image data

Kernel size = 2k+1

0 10 5 7 0

5 11 6 8 3

9 22 4 5 1

2 9 14 6 7

3 10 15 12 9

7

S[f](m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

Convolution and cross-correlation

• Cross correlation

• Convolution

S[f](m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

S[f](m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m� i, n� j)

S[f] = w ⌦ f

S[f] = w ⇤ f

Convolution

Adapted from F. Durand

Properties: Linearity

(w ⌦ f)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

f 0 = af + bg

w ⌦ f 0 = a(w ⌦ f) + b(w ⌦ g)

Properties: Linearity

(w ⌦ f)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

w0 = aw + bv

w0 ⌦ f = a(w ⌦ f) + b(v ⌦ f)

Properties: Shift invariance

f 0(m,n) = f(m�m0, n� n0)

f f’

(w ⌦ f)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

Shift invariance

f 0(m,n) = f(m�m0, n� n0)

=
kX

i=�k

kX

j=�k

w(i, j)f(m+ i�m0, n+ j � n0)

(w ⌦ f)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

(w ⌦ f 0)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f 0(m+ i, n+ j)

= (w ⌦ f)(m�m0, n� n0)

Shift invariance

• Shift, then convolve = convolve, then shift
• Convolution does not depend on where the pixel is

(w ⌦ f 0)(m,n) = (w ⌦ f)(m�m0, n� n0)
f 0(m,n) = f(m�m0, n� n0)

f f’

Why is convolution important?
• Shift invariance is a crucial property

Why is convolution important?

• We like linearity
• Linear functions behave predictably when input changes
• Lots of theory just easier with linear functions

• All linear shift-invariant systems can be expressed
as a convolution
• Basic primitive in computer vision

Image resizing

Why is resizing hard?

• E.g, consider reducing size by a factor of 2
• Simple solution: subsampling
• Example: subsampling by a factor of 2

Why is resizing hard?

• Dropping pixels causes problems

Aliasing in time

Aliasing in time

Why does aliasing happen?

• We ”miss” things between samples
• High frequency signals might appear as low

frequency signals
• Called “aliasing”

© Kavita Bala, Computer Science, Cornell University

What about the general case?

• Every signal (doesn’t matter what it is)
• Sum of sine/cosine waves
• Fourier transform

Fourier transform

• Represent each signal as a linear combination of
sines and cosines
• Equivalent to a change of basis
• Fourier transform = representation of signal in
Fourier basis

Fourier transform for images

• Images are 2D arrays
• Fourier basis elements are indexed by 2 spatial

frequencies
• (i,j)th Fourier basis for N x N image
• Has period N/i along x
• Has period N/j along y

• !",$ %, & = (
)*+,-
. /)*+01.

= cos 267%
8 + 26:&8 + ; sin (267%8 + 26:&8)

Visualizing the Fourier basis for
images

!"," !$,%&

!"&,"!&,&

Visualizing the Fourier transform

• Given NxN image, there are NxN basis elements
• Fourier coefficients can be represented as an NxN

image

High
frequency

in X

Aliasing

Aliasing

• Image = linear combination of high frequency and
low frequency components
• Subsampling: high frequency components alias as

low frequency
• First smooth the image to remove high frequency

components
• How should we smooth?
• Mean filtering?

Convolution and Fourier
transforms
• Image: Spatial domain

• Fourier Transform: Frequency domain
• Amplitudes are called spectrum

• For any transformations we do in spatial domain,
there are corresponding transformations we can
do in the frequency domain
• And vice-versaSpatial Domain

Convolution and Fourier
transforms
• Convolution in spatial domain = Point-wise

multiplication in frequency domain
• ℎ = # ∗ % ⇒ ℎ ',) = ∑+, # -, . % ' − -,) − .
• 0 = 1 ⋅ 3 ⇒ 0 4, 5 = 1 4, 5 3(4, 5)

• Convolution in frequency domain = Point-wise
multiplication in spatial domain

Smoothing and Fourier transforms
• Mean filter = convolving with a “box” filter

Filter
Fourier

transform

Box/mean filter

Gaussian filter

Subsampling before and after
smoothing

Before After

Gaussian
pre-
filtering
• Solution: filter

the image, then
subsample

blur

F0 H*

subsample blur subsample …
F1

F1 H*

F2F0

blur

F0 H*

subsample blur subsample …
F1

F1 H*

F2F0
{Gaussian

pyramid

Anti-aliasing circa 2019

R. Zhang. Making convolutional networks shift-invariant again. In ICML, 2019.

Edge detection

Edges

• Edges are curves in the image, across which the
brightness changes “a lot”
• Corners/Junctions

Closeup of edges

Source: D. Hoiem

Closeup of edges

Source: D. Hoiem

Closeup of edges

Source: D. Hoiem

Closeup of edges

Source: D. Hoiem

Characterizing edges
• An edge is a place of rapid change in the image

intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivativeSource: L. Lazebnik

Intensity profile

Source: D. Hoiem

Derivatives and convolution

• Differentiation is linear

• Differentiation is shift-invariant
• Derivative of shifted signal is shifted derivative

• Hence, differentiation can be represented as
convolution!

@(af(x) + bg(x))

@x
= a

@f(x)

@x
+ b

@g(x)

@x

• How can we differentiate a digital image F[x,y]?
– Option 1: reconstruct a continuous image, f, then

compute the derivative
– Option 2: take discrete derivative (finite difference)

1 -1

How would you implement this as a linear filter?

Image derivatives

-1

1
: :

Source: S. Seitz

The gradient points in the direction of most rapid increase in intensity

Image gradient
• The gradient of an image:

The edge strength is given by the gradient magnitude:

The gradient direction is given by:

• how does this relate to the direction of the edge?
Source: Steve Seitz

Image gradient

Source: L. Lazebnik

With a little Gaussian noise

Gradient

Source: D. Hoiem

Effects of noise

Where is the edge?
Source: S. Seitz

Noisy input image

Solution: smooth first

f

h

f * h

Source: S. Seitz
To find edges, look for peaks in

• Differentiation is a convolution
• Convolution is associative:
• This saves us one operation:

Associative property of convolution

f

Source: S. Seitz

2D edge detection filters

Gaussian
derivative of Gaussian (x)

Derivative of Gaussian filter

x-direction y-direction

