
Image processing



Today

• Consequences of image formation

• Some basic primitives needed for computer vision 
problems
• Edge detection
• Image resizing

• Convolution as a basic operation
• Image pyramids as a basic structure



Recap

• Geometry:

• Color (Lambertian assumptipn):  
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Consequences of image formation

• Nearby objects appear larger
• Parallel lines and planes converge
• Information lost: distance from camera
• Pixel color depends on light intensity, light direction 

and surface normal and paint on object
• So objects in images
• can appear in many different sizes and many positions
• can have very different color



Consequence 1: nearby pixels are 
similar



Consequence 1: nearby pixels are 
similar
• Why?
• Nearby pixels in pinhole camera lead to nearby rays
• Nearby rays mostly fall on the same object
• Objects have mostly smooth surfaces and mostly uniform color
• Lighting is mostly uniform



Consequence 1: nearby pixels are 
similar
• Nearby pixels that are not similar tend to have different 

depth, surface normal, paint or lighting
• Idea: Abrupt changes in color can delineate objects, be a 

clue to shape, or be distinctive marks

Depth discontinuities Changes in albedo
Normal 

discontinuities



Key primitive: edge detection



Consequence 2: Farther away 
objects appear smaller



Key primitive: Image resizing

• May need to match
objects/patches across
different scales.



Some primitives

• Edge detection: identifying where pixels change 
color
• Cue to object boundary
• Cue to shape
• More resilient to lighting than pixel color

• Image resizing: downsizing or upscaling images
• Allows searching over scales

• Basic operation: convolution



Convolution



Image denoising



What is an image?
• A grid (matrix) of intensity values: 1 color or 3 colors

=
255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 20 0 255 255 255 255 255 255 255

255 255 255 75 75 75 255 255 255 255 255 255

255 255 75 95 95 75 255 255 255 255 255 255

255 255 96 127 145 175 255 255 255 255 255 255

255 255 127 145 175 175 175 255 255 255 255 255

255 255 127 145 200 200 175 175 95 255 255 255

255 255 127 145 200 200 175 175 95 47 255 255

255 255 127 145 145 175 127 127 95 47 255 255

255 255 74 127 127 127 95 95 95 47 255 255

255 255 255 74 74 74 74 74 74 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255



Mean filtering: replace pixel by 
mean of neighborhood
0 0 0 0 0 0 0 0 0 0

0 0 0 10 10 10 0 0 0 0

0 0 10 20 20 20 10 40 0 0

0 10 20 30 0 20 10 0 0 0

0 10 0 30 40 30 20 10 0 0

0 10 20 30 40 30 20 10 0 0

0 10 20 10 40 30 20 10 0 0

0 10 20 30 30 20 10 0 0 0

0 0 10 20 20 0 10 0 20 0

0 0 0 10 10 10 0 0 0 0

(0 + 0 + 0 + 10 + 40 + 0 + 10 + 0 + 0)/9 = 6.66



Noise reduction using mean 
filtering



A more general version

Local image data

Kernel size = 2k+1
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Convolution and cross-correlation

• Cross correlation

• Convolution

S[f ](m,n) =
kX

i=�k

kX
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w(i, j)f(m+ i, n+ j)

S[f ](m,n) =
kX

i=�k
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j=�k

w(i, j)f(m� i, n� j)

S[f ] = w ⌦ f

S[f ] = w ⇤ f



Convolution

Adapted from F. Durand



Properties: Linearity

(w ⌦ f)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

f 0 = af + bg

w ⌦ f 0 = a(w ⌦ f) + b(w ⌦ g)



Properties: Linearity

(w ⌦ f)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

w0 = aw + bv

w0 ⌦ f = a(w ⌦ f) + b(v ⌦ f)



Properties: Shift invariance

f 0(m,n) = f(m�m0, n� n0)

f f’
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w(i, j)f(m+ i, n+ j)



Shift invariance

f 0(m,n) = f(m�m0, n� n0)

=
kX

i=�k

kX

j=�k

w(i, j)f(m+ i�m0, n+ j � n0)

(w ⌦ f)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f(m+ i, n+ j)

(w ⌦ f 0)(m,n) =
kX

i=�k

kX

j=�k

w(i, j)f 0(m+ i, n+ j)

= (w ⌦ f)(m�m0, n� n0)



Shift invariance

• Shift, then convolve = convolve, then shift
• Convolution does not depend on where the pixel is

(w ⌦ f 0)(m,n) = (w ⌦ f)(m�m0, n� n0)
f 0(m,n) = f(m�m0, n� n0)

f f’



Why is convolution important?
• Shift invariance is a crucial property



Why is convolution important?

• We like linearity
• Linear functions behave predictably when input changes
• Lots of theory just easier with linear functions

• All linear shift-invariant systems can be expressed 
as a convolution
• Basic primitive in computer vision



Image resizing



Why is resizing hard?

• E.g, consider reducing size by a factor of 2
• Simple solution: subsampling
• Example: subsampling by a factor of 2



Why is resizing hard?

• Dropping pixels causes problems







Aliasing in time



Aliasing in time



Why does aliasing happen?

• We ”miss” things between samples
• High frequency signals might appear as low 

frequency signals
• Called “aliasing”

© Kavita Bala, Computer Science, Cornell University



What about the general case?

• Every signal (doesn’t matter what it is)
• Sum of sine/cosine waves
• Fourier transform



Fourier transform

• Represent each signal as a linear combination of 
sines and cosines
• Equivalent to a change of basis
• Fourier transform = representation of signal in
Fourier basis



Fourier transform for images

• Images are 2D arrays
• Fourier basis elements are indexed by 2 spatial 

frequencies
• (i,j)th Fourier basis for N x N image
• Has period N/i along x
• Has period N/j along y

• !",$ %, & = (
)*+,-
. /)*+01.

= cos 267%
8 + 26:&8 + ; sin (267%8 + 26:&8 )



Visualizing the Fourier basis for 
images
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Visualizing the Fourier transform

• Given NxN image, there are NxN basis elements
• Fourier coefficients can be represented as an NxN

image

High 
frequency 

in X



Aliasing



Aliasing

• Image = linear combination of high frequency and
low frequency components
• Subsampling: high frequency components alias as 

low frequency
• First smooth the image to remove high frequency 

components
• How should we smooth?
• Mean filtering?



Convolution and Fourier 
transforms
• Image: Spatial domain

• Fourier Transform: Frequency domain
• Amplitudes are called spectrum

• For any transformations we do in spatial domain, 
there are corresponding transformations we can 
do in the frequency domain
• And vice-versaSpatial Domain



Convolution and Fourier 
transforms
• Convolution in spatial domain = Point-wise 

multiplication in frequency domain
• ℎ = # ∗ % ⇒ ℎ ', ) = ∑+, # -, . % ' − -, ) − .
• 0 = 1 ⋅ 3 ⇒ 0 4, 5 = 1 4, 5 3(4, 5)

• Convolution in frequency domain = Point-wise 
multiplication in spatial domain



Smoothing and Fourier transforms
• Mean filter = convolving with a “box” filter

Filter
Fourier 

transform

Box/mean filter

Gaussian filter



Subsampling before and after 
smoothing

Before After



Gaussian 
pre-
filtering
• Solution: filter 

the image, then
subsample

blur

F0 H*

subsample blur subsample …
F1

F1 H*

F2F0



blur

F0 H*

subsample blur subsample …
F1

F1 H*

F2F0
{Gaussian 

pyramid



Anti-aliasing circa 2019

R. Zhang. Making convolutional networks shift-invariant again. In ICML, 2019. 



Edge detection



Edges

• Edges are curves in the image, across which the 
brightness changes “a lot”
• Corners/Junctions



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Characterizing edges
• An edge is a place of rapid change in the image 

intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivativeSource: L. Lazebnik



Intensity profile

Source: D. Hoiem



Derivatives and convolution

• Differentiation is linear

• Differentiation is shift-invariant
• Derivative of shifted signal is shifted derivative

• Hence, differentiation can be represented as 
convolution!

@(af(x) + bg(x))

@x
= a

@f(x)

@x
+ b

@g(x)

@x



• How can we differentiate a digital image F[x,y]?
– Option 1:  reconstruct a continuous image, f, then 

compute the derivative
– Option 2:  take discrete derivative (finite difference)

1 -1

How would you implement this as a linear filter?

Image derivatives

-1

1
: :

Source: S. Seitz



The gradient points in the direction of most rapid increase in intensity

Image gradient
• The gradient of an image: 

The edge strength is given by the gradient magnitude:

The gradient direction is given by:

• how does this relate to the direction of the edge?
Source: Steve Seitz



Image gradient

Source: L. Lazebnik



With a little Gaussian noise

Gradient

Source: D. Hoiem



Effects of noise

Where is the edge?
Source: S. Seitz

Noisy input image



Solution: smooth first

f

h

f * h

Source: S. Seitz
To find edges, look for peaks in



• Differentiation is a convolution
• Convolution is associative:
• This saves us one operation:

Associative property of convolution

f

Source: S. Seitz



2D edge detection filters

Gaussian
derivative of Gaussian (x)



Derivative of Gaussian filter

x-direction y-direction


