Recap: Geometry of image formation

### The pinhole camera



Let's get into the math

#### Another derivation



## A virtual image plane

- A pinhole camera produces an inverted image
- Imagine a "virtual image plane" in the front of the camera



### The projection equation

$$x = \frac{X}{Z}$$
$$y = \frac{Y}{Z}$$

## Consequence 1: Farther away objects are smaller



Image of foot: 
$$(\frac{X}{Z}, \frac{Y}{Z})$$
  
Image of head:  $(\frac{X}{Z}, \frac{Y+h}{Z})$ 

$$\frac{Y+h}{Z} - \frac{Y}{Z} = \frac{h}{Z}$$

# Consequence 2: Parallel lines converge at a point



## What about planes?





Parallel planes converge!

## Changing coordinate systems



## Putting everything together

 Change coordinate system so that center of the coordinate system is at pinhole and Z axis is along viewing direction

$$\mathbf{x}'_w = R\mathbf{x}_w + \mathbf{t}$$

Perspective projection

$$\mathbf{x}'_{w} \equiv (X, Y, Z) \qquad \qquad x = \frac{X}{Z}$$
$$\mathbf{x}'_{img} \equiv (x, y) \qquad \qquad y = \frac{Y}{Z}$$

Can projection be represented as a matrix multiplication?

Matrix multiplication 
$$\begin{bmatrix} a & b & c \\ p & q & r \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} aX + bY + cZ \\ pX + qY + rZ \end{bmatrix}$$

Perspective projection

$$x = \frac{X}{Z}$$
$$y = \frac{Y}{Z}$$

## The space of rays

- Every point on a ray maps it to a point on image plane
- Perspective projection maps rays to points
- All points  $(\lambda x, \lambda y, \lambda)$ map to the same image point (x,y,1)



# Projective space and homogenous coordinates

• Mapping  $\mathbb{R}^2$  to  $\mathbb{P}^2$  (points to rays):

$$(x,y) \to (x,y,1)$$

• Mapping  $\mathbb{P}^2$  to  $\mathbb{R}^2$  (rays to points):

$$(x, y, z) \to (\frac{x}{z}, \frac{y}{z})$$

- A change of coordinates
- Also called *homogenous coordinates*

### Homogenous coordinates

- In standard Euclidean coordinates
  - 2D points : (x,y)
  - 3D points : (x,y,z)
- In homogenous coordinates
  - 2D points : (x,y,1)
  - 3D points : (x,y,z,1)

## Why homogenous coordinates?



#### Homogenous coordinates

 $\begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} aX + bY + cZ + t_x \\ dX + eY + fZ + t_y \\ gX + hY + iZ + t_z \\ 1 \end{bmatrix}$ 

 $\begin{bmatrix} \boldsymbol{M} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_w \\ 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{M}\mathbf{x}_w + \mathbf{t} \\ 1 \end{bmatrix}$ 

Perspective projection in homogenous coordinates

$$\vec{\mathbf{x}}_{img} = \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \begin{bmatrix} R & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \vec{\mathbf{x}}_w$$

$$\vec{\mathbf{x}}_{img} = \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

#### Matrix transformations in 2D

$$\vec{\mathbf{x}}_{img} \equiv K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$



## Final perspective projection

Camera extrinsics: where your camera is relative to the world. Changes if you move the camera

$$\vec{\mathbf{x}}_{img} \equiv \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$
  
Camera intrinsics:  
how your camera  
handles pixel.  
Changes if you  
change your camera

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

## Final perspective projection

$$\vec{\mathbf{x}}_{img} \equiv K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$$

$$\vec{\mathbf{x}}_{img} \equiv P \vec{\mathbf{x}}_w$$

## Image Formation - Color

### The pinhole camera



## The pinhole camera



- A pixel is some kind of sensor that measures incident energy
- But what exactly does it measure?

## Sensing light

- Consider a sensor placed in a single beam of light.
- How much energy does it get?
  - Not enough information



#### Factor 1: Area

- Larger sensors capture more power
  - Power = LA?
  - L: measure of beam brightness (*radiance*)
  - Radiance is power per unit area?



## Factor 2: Orientation

- Slanted sensors receive less light
  - Power =  $LA \cos \theta$
  - L = Radiance = Power per unit *projected* area



## Multiple beams



- Power must be sum of power from each beam
  - Power =  $L_1 A \cos \theta_1 + L_2 A \cos \theta_2$
  - $\theta_1$  and  $\theta_2$  are dependent on beam direction
  - Similarly  $L_1$  and  $L_2$
- General case: Light comes from all directions
  - Must integrate infinitesimal contributions from all directions

## A hemisphere of directions

- In 2D, direction = angle
- Infinitesimal set of directions = infinitesimal angle
- Integrate over all directions = integrate over angle
- 3D?



## A hemisphere of directions

- In 3D direction = *solid angle*
- Definition:
  - 2D: angle = arc length / radius
  - 3D: solid angle = *area* / *radius*<sup>2</sup>





## Multiple beams

- Integrate incident energy from all directions
- Power =  $\int L(\Omega) A \cos \theta(\Omega) d\Omega$
- Radiance = L = Power in a particular direction per unit projected area per unit solid angle

#### Integrating over area

- What if sensor is not flat?
  - Orientation depends on location
- What if parts of the sensor receive less light?
  - L depends on location
- Divide sensor into infinitesimal elements and integrate
  - Power =  $\int \int L(x, \Omega) \cos \theta(x, \Omega) \, dA d\Omega$

### Radiance

- Power =  $\int \int L(x, \Omega) \cos \theta(x, \Omega) dA d\Omega$
- $L(x, \Omega)$  is the **Radiance** 
  - **Power** at point x
  - in direction  $\boldsymbol{\Omega}$
  - per unit projected area
  - per unit solid angle

## What do pixels measure?

- A pixel measures total power incident on it
- Power =  $\int \int L(x, \Omega) \cos \theta(x, \Omega) dA d\Omega$
- But only a very narrow range of directions!



## What do pixels measure?

- A pixel measures total power incident on it
- Power =  $LA \cos \theta$ ?
- Close to the center, Power proportional to L



#### Radiance

#### • Pixels measure *radiance*



## Where do the rays come from?

- Rays from the light source "reflect" off a surface and reach camera
- Reflection: Surface absorbs light energy and radiates it back





- I : Incoming light direction (only one direction)
- **O** : Outgoing light direction (viewing direction)
- N : Surface normal
- *L<sub>i</sub>*: Incoming light radiance
- *L<sub>o</sub>*: Outgoing light radiance



- Consider a surface patch of unit area
- How much power does it receive?
- $E_i = L_i \cos \theta_i$
- Some fraction of this will be emitted
- Fraction might depend on I, O  $L_o = \rho(I, O)E_i$  $= \rho(I, O)L_i \cos \theta_i$



Incoming energe  
(Irradiance)  
$$L_o = \rho(I, O) L_i \cos \theta_i$$
  
BRDF: Bidirectional  
reflectance function



$$L_o = \rho(I, O) L_i \cos \theta_i$$

- Special case 1: Specular surfaces
  - All light reflected in a single direction
  - $\rho(I, O) = 0$  unless  $\theta_i = \theta_r$





$$L_o = \rho(I, O) L_i \cos \theta_i$$

- Special case 2: Matte surfaces
  - Light reflected equally in all directions
  - $\rho(I, O) = \rho$  (constant)
  - $\rho$  is **albedo** : amount of paint
  - These are also called
    Lambertian surfaces

### Lambertian surface

- $L_o = \rho L_i \cos \theta_i$
- Outgoing radiance does not depend on viewing direction
- Given same light, pixel looks the same from all views
- Frequent assumption in computer vision

## Intrinsic image decomposition

- Consider a lambertian scene lit with directional light
- Image pixel (x,y) corresponds to point in scene with
  - albedo  $\rho(x, y)$
  - surface normal making angle  $\theta_i(x, y)$  with light direction
- Pixel color:

$$I(x,y) = \rho(x,y) L_i \cos \theta_i(x,y)$$
  
Image "Reflectance" "Shading"  
Image

## Intrinsic image decomposition

- Consider a lambertian scene lit with directional light
- Pixel color:



- Reflectance image depends only on object paint
- Shading image depends only on light and object shape (normals)

#### Integrating over incoming light

• General case

$$L_o = \int \rho(I, O) L_i(I) \cos \theta_i(I) \, d\Omega$$

• Lambertian case

$$L_o = \rho \int L_i(I) \cos \theta_i(I) \, d\Omega$$

#### Extension to color

• General case

$$L_o(\lambda) = \int \rho(I, O, \lambda) L_i(I, \lambda) \cos \theta_i(I) \, d\Omega$$

• Lambertian case

$$L_o(\lambda) = \rho(\lambda) \int L_i(I,\lambda) \cos \theta_i(I) d\Omega$$

### Intrinsic image decomposition



#### Lambertian surfaces



### Lambertian surfaces

Far



# Other lighting effects



#### How to create an image

- Create objects
  - Pick shape
  - Pick material
    - Is it Lambertian?
    - Pick albedo
- Place objects in coordinate system
- Place lights
- Place camera
- Take image

# The final output: image

• A grid (matrix) of intensity values



| 255 | 255 | 255 | 255 | 255 | 255 | 255    | 255    | 255 | 255 | 255 | 255 |
|-----|-----|-----|-----|-----|-----|--------|--------|-----|-----|-----|-----|
| 255 | 255 | 255 | 255 | 255 | 255 | 255    | 255    | 255 | 255 | 255 | 255 |
| 255 | 255 | 255 | 20  | 0   | 255 | 255    | 255    | 255 | 255 | 255 | 255 |
| 255 | 255 | 255 | 75  | 75  | 75  | 255    | 255    | 255 | 255 | 255 | 255 |
| 255 | 255 | 75  | 95  | 95  | 75  | 255    | 255    | 255 | 255 | 255 | 255 |
| 255 | 255 | 96  | 127 | 145 | 175 | 255    | 255    | 255 | 255 | 255 | 255 |
| 255 | 255 | 127 | 145 | 175 | 175 | 175    | 255    | 255 | 255 | 255 | 255 |
| 255 | 255 | 127 | 145 | 200 | 200 | 175    | 175    | 95  | 255 | 255 | 255 |
| 255 | 255 | 127 | 145 | 200 | 200 | 175    | 175    | 95  | 47  | 255 | 255 |
| 255 | 255 | 127 | 145 | 145 | 175 | 127    | 127    | 95  | 47  | 255 | 255 |
| 255 | 255 | 74  | 127 | 143 | 173 | 95     | 95     | 95  | 47  | 255 | 255 |
|     |     |     | 74  | 74  |     | <br>74 | <br>74 |     |     |     |     |
| 255 | 255 | 255 |     |     | 74  |        |        |     | 255 | 255 | 255 |
| 255 | 255 | 255 | 255 | 255 | 255 | 255    | 255    | 255 | 255 | 255 | 255 |
| 255 | 255 | 255 | 255 | 255 | 255 | 255    | 255    | 255 | 255 | 255 | 255 |

(common to use one byte per value: 0 = black, 255 = white)

### Images as functions

- Can think of image as a function, f, from R<sup>2</sup> to R or R<sup>M</sup>:
  - Grayscale: f(x,y) gives **intensity** at position (x,y)
    - f: [a,b] x [c,d] →[0,255]
  - Color: f(x,y) = [r(x,y), g(x,y), b(x,y)]

 Consequence of perspective projection: Loss of depth information



Ames room illusion Image credit: Ian Stannard

 Consequence of perspective projection: Loss of depth information



- Lambertian scene:  $L_o = \rho L_i \cos \theta_i$
- Appearance only depends on the angle between surface normal and lighting direction



 Bas-relief ambiguity: many surface normal and light directions give same image



Belhumeur, Peter N., David J. Kriegman, and Alan L. Yuille. "The bas-relief ambiguity." *International journal of computer vision* 35.1 (1999): 33-44.



- Raised spots, light from right?
- Depressed spots, light from left?

• What color is the dress?



• Key issue: color can be because of albedo or light  $L_o(\lambda) = \rho(\lambda)L_i(\lambda)\cos\theta_i$ 



https://xkcd.com/1492/