Recap: Geometry of image formation

The pinhole camera

Let's get into the math

Another derivation

A virtual image plane

- A pinhole camera produces an inverted image
- Imagine a "virtual image plane" in the front of the camera

The projection equation

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

Consequence 1: Farther away objects are smaller

Image of foot: $\left(\frac{X}{Z}, \frac{Y}{Z}\right)$
Image of head: $\left(\frac{X}{Z}, \frac{Y+h}{Z}\right)$

$$
\frac{Y+h}{Z}-\frac{Y}{Z}=\frac{h}{Z}
$$

Consequence 2: Parallel lines converge at a point

What about planes?

Normal: $\left(N_{X} N_{F} N_{Z}\right)$
What do parallel planes look like?

Changing coordinate systems

Putting everything together

- Change coordinate system so that center of the coordinate system is at pinhole and Z axis is along viewing direction

$$
\mathbf{x}_{w}^{\prime}=R \mathbf{x}_{w}+\mathbf{t}
$$

- Perspective projection

$$
\begin{aligned}
\mathbf{x}_{w}^{\prime} & \equiv(X, Y, Z) & x & =\frac{X}{Z} \\
\mathbf{x}_{i m g}^{\prime} & \equiv(x, y) & y & =\frac{Y}{Z}
\end{aligned}
$$

Can projection be represented as a matrix multiplication?

Matrix multiplication $\left[\begin{array}{lll}a & b & c \\ p & q & r\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{l}a X+b Y+c Z \\ p X+q Y+r Z\end{array}\right]$

Perspective projection

$$
\begin{aligned}
& x=\frac{X}{Z} \\
& y=\frac{Y}{Z}
\end{aligned}
$$

The space of rays

- Every point on a ray maps it to a point on image plane
- Perspective projection maps rays to points
- All points $(\lambda x, \lambda y, \lambda)$ map to the same image point ($x, y, 1$)

Projective space and homogenous coordinates

- Mapping \mathbb{R}^{2} to \mathbb{P}^{2} (points to rays):

$$
(x, y) \rightarrow(x, y, 1)
$$

- Mapping \mathbb{P}^{2} to \mathbb{R}^{2} (rays to points):

$$
(x, y, z) \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right)
$$

- A change of coordinates
- Also called homogenous coordinates

Homogenous coordinates

- In standard Euclidean coordinates
- 2D points : (x, y)
-3D points : (x, y, z)
- In homogenous coordinates
- 2D points : ($x, y, 1$)
- 3D points : $(x, y, z, 1)$

Why homogenous coordinates?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
\frac{X}{Z} \\
\frac{Y}{Z} \\
1
\end{array}\right]
$$

Homogenous coordinates

$\left[\begin{array}{llll}a & b & c & t_{x} \\ d & e & f & t_{y} \\ g & h & i & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\left[\begin{array}{c}a X+b Y+c Z+t_{x} \\ d X+e Y+f Z+t_{y} \\ g X+h Y+i Z+t_{z} \\ 1\end{array}\right]$

$$
\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{w} \\
1
\end{array}\right]=\left[\begin{array}{c}
M \mathbf{x}_{w}+\mathbf{t} \\
1
\end{array}\right]
$$

Perspective projection in homogenous coordinates

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
\overrightarrow{\mathbf{x}}_{i m g}=\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
\end{gathered}
$$

Matrix transformations in 2D

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w}
$$

$$
K=\underset{\text { Translation }}{\left[\begin{array}{ccc}
1 & 0 & t_{u} \\
0 & 1 & t_{v} \\
0 & 0 & 1
\end{array}\right]}
$$

$$
K=\left[\begin{array}{ccc}
s_{x} & 0 & t_{u} \\
0 & s_{y} & t_{v} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\text { Scaling of Image } \mathrm{x} \text { and } \mathrm{y}
$$

(conversion from "meters"

$$
K=\left[\begin{array}{ccc}
s_{x} & \alpha & t_{u} \\
0 & s_{y} & t_{v} \\
0 & 0 & 1
\end{array}\right] \quad \text { to "pixels") }
$$

Added skew if image x and y axes are not perpendicular

Final perspective projection

Final perspective projection

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}_{i m g} \equiv & K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \overrightarrow{\mathbf{x}}_{w} \\
& =\text { Cemera parameters }
\end{aligned}
$$

$$
\overrightarrow{\mathbf{x}}_{i m g} \equiv P \overrightarrow{\mathbf{x}}_{w}
$$

Image Formation - Color

The pinhole camera

We know where a pixel comes
from.
But what is its color?

The pinhole camera

We know where a pixel comes from.
But what is its color?

- A pixel is some kind of sensor that measures incident energy
- But what exactly does it measure?

Sensing light

- Consider a sensor placed in a single beam of light.
- How much energy does it get?
- Not enough information

Factor 1: Area

- Larger sensors capture more power
- Power = LA?
- L: measure of beam brightness (radiance)
- Radiance is power per unit area?

Factor 2: Orientation

- Slanted sensors receive less light
- Power = LA $\cos \theta$
- L = Radiance = Power per unit projected area

Multiple beams

- Power must be sum of power from each beam
- Power $=L_{1} A \cos \theta_{1}+L_{2} A \cos \theta_{2}$
- θ_{1} and θ_{2} are dependent on beam direction
- Similarly L_{1} and L_{2}
- General case: Light comes from all directions
- Must integrate infinitesimal contributions from all directions

A hemisphere of directions

- In 2D, direction = angle
- Infinitesimal set of directions = infinitesimal angle
- Integrate over all directions = integrate over angle
-3D?

A hemisphere of directions

- In 3D direction = solid angle
- Definition:
- 2D: angle = arc length / radius
- 3D: solid angle = area $/$ radius 2
- $\Omega=\frac{A}{r^{2}}$

Multiple beams

- Integrate incident energy from all directions
- Power $=\int L(\Omega) A \cos \theta(\Omega) d \Omega$
- Radiance = L = Power in a particular direction per unit projected area per unit solid angle

Integrating over area

- What if sensor is not flat?
- Orientation depends on location
- What if parts of the sensor receive less light?
- L depends on location
- Divide sensor into infinitesimal elements and integrate
- Power $=\iint L(x, \Omega) \cos \theta(x, \Omega) d A d \Omega$

Radiance

- Power $=\iint L(x, \Omega) \cos \theta(x, \Omega) d A d \Omega$
- $L(x, \Omega)$ is the Radiance
- Power at point x
- in direction Ω
- per unit projected area
- per unit solid angle

What do pixels measure?

- A pixel measures total power incident on it
- Power $=\iint L(x, \Omega) \cos \theta(x, \Omega) d A d \Omega$
- But only a very narrow range of directions!

What do pixels measure?

- A pixel measures total power incident on it
- Power = $L A \cos \theta$?
- Close to the center, Power proportional to L

Radiance of
this point in

this direction
= L

Radiance

- Pixels measure radiance

Where do the rays come from?

- Rays from the
light source
"reflect" off a
surface and reach camera
- Reflection:

Surface absorbs light energy and radiates it back

Light rays interacting with a surface

- I : Incoming light direction (only one direction)
- O : Outgoing light direction (viewing direction)
- \mathbf{N} : Surface normal
- L_{i} : Incoming light radiance
- L_{o} : Outgoing light radiance

Light rays interacting with a surface

- Consider a surface patch of unit area
- How much power does it receive?
- $E_{i}=L_{i} \cos \theta_{i}$
- Some fraction of this will be emitted
- Fraction might depend on I, O

$$
\begin{gathered}
L_{o}=\rho(I, O) E_{i} \\
=\rho(I, O) L_{i} \cos \theta_{i}
\end{gathered}
$$

Light rays interacting with a

 surfaceIncoming energy (Irradiance)

$$
\begin{aligned}
& L_{o}=\rho(I, O) L_{i} \cos \theta_{i} \\
& \text { BRDF: Bidirectional } \\
& \text { reflectance function }
\end{aligned}
$$

Light rays interacting with a surface

$$
L_{o}=\rho(I, O) L_{i} \cos \theta_{i}
$$

- Special case 1: Specular surfaces
- All light reflected in a single direction
- $\rho(I, O)=0$ unless $\theta_{i}=\theta_{r}$

Light rays interacting with a surface

$$
L_{o}=\rho(I, O) L_{i} \cos \theta_{i}
$$

- Special case 2: Matte surfaces
- Light reflected equally in all directions
- $\rho(I, O)=\rho$ (constant)
- ρ is albedo : amount of paint
- These are also called Lambertian surfaces

Lambertian surface

- $L_{o}=\rho L_{i} \cos \theta_{i}$
- Outgoing radiance does not depend on viewing direction
- Given same light, pixel looks the same from all views
- Frequent assumption in computer vision

Intrinsic image decomposition

- Consider a lambertian scene lit with directional light
- Image pixel (x, y) corresponds to point in scene with
- albedo $\rho(x, y)$
- surface normal making angle $\theta_{i}(x, y)$ with light direction
- Pixel color:

$$
I(x, y)=\rho(x, y) L_{i} \cos \theta_{i}(x, y)
$$

Image
"Reflectance" image
"Shading" Image

Intrinsic image decomposition

- Consider a lambertian scene lit with directional light
- Pixel color:

- Reflectance image depends only on object paint
- Shading image depends only on light and object shape (normals)

Integrating over incoming light

- General case

$$
L_{o}=\int \rho(I, O) L_{-} i(I) \cos \theta_{i}(I) d \Omega
$$

- Lambertian case

$$
L_{o}=\rho \int L_{-} i(I) \cos \theta_{i}(I) d \Omega
$$

Extension to color

- General case

$$
L_{o}(\lambda)=\int \rho(I, O, \lambda) L_{-} i(I, \lambda) \cos \theta_{i}(I) d \Omega
$$

- Lambertian case

$$
L_{o}(\lambda)=\rho(\lambda) \int L_{-} i(I, \lambda) \cos \theta_{i}(I) d \Omega
$$

Intrinsic image decomposition

$I(x, y, \lambda)=\rho(x, y, \lambda) \int L_{i}(I, \lambda) \cos \theta_{i}(x, y, I) d \Omega$	
Image "Reflectance"	"Shading"
image,	image
depends on	
paint only	depends on
	shape,
lighting	

Lambertian surfaces

Lambertian surfaces

Far

Other lighting effects

Point Light Source

How to create an image

- Create objects
- Pick shape
- Pick material
- Is it Lambertian?
- Pick albedo
- Place objects in coordinate system
- Place lights
- Place camera
- Take image

The final output: image

- A grid (matrix) of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: 0 = black, 255 = white)

Images as functions

- Can think of image as a function, f, from R^{2} to R or R^{M} :
- Grayscale: $f(x, y)$ gives intensity at position (x, y)
- $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \times[\mathrm{c}, \mathrm{d}] \rightarrow[0,255]$
- Color: $f(x, y)=[r(x, y), g(x, y), b(x, y)]$

The inherent ambiguity in images

- Consequence of perspective projection: Loss of depth information

The inherent ambiguity in images

- Consequence of perspective projection: Loss of depth information

The inherent ambiguity of images

- Lambertian scene: $L_{o}=\rho L_{i} \cos \theta_{i}$
- Appearance only depends on the angle between surface normal and lighting direction

The inherent ambiguity of images

- Bas-relief ambiguity: many surface normal and light directions give same image

Belhumeur, Peter N., David J. Kriegman, and Alan L. Yuille. "The bas-relief ambiguity." International journal of computer vision 35.1 (1999): 33-44.

The inherent ambiguity of images

- Raised spots, light from right?
- Depressed spots, light from left?

The inherent ambiguity of images

- What color is the dress?

The inherent ambiguity of images

- Key issue: color can be because of albedo or light

https://xkcd.com/1492/

