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We have seen where in the 3D world a pixel on the image corresponds to.
Now the question is, what determines the color of the pixel?

1 Radiance

Consider a piece of paper left outside at midday. We want to ask how much
radiant energy, or rather radiant power (energy per unit time) falls on the paper?

Clearly, the larger the piece of paper, the more the power that falls on it.
So if the piece of paper has an area A, then we might say that the paper gets
radiant power Φ = LA for some constant L.

But this is not right. What if the light rays are not perpendicular to the
piece of paper, but oblique? As can be seen from Figure 1, the piece of paper
will receive less light. In fact, it can be seen that the amount of light received
only depends on the projected area of the paper, projected onto a direction
perpendicular to the light. If light is coming in at a direction that makes an
angle θ with the surface normal, then the projected area is A cos θ. So we might
claim that the radiant power incident on the piece of paper is Φ = LA cos θ.

But this assumes the entire piece of paper gets the same amount of light.
What if the different parts of the paper get different amounts of light? This
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Figure 1: Setup. Ω is the solid angle, and equals the area A projected onto the
sphere, A′, divided by the squared radius
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Figure 2: Conservation of radiance

would mean that L is no longer constant. What we can do is to divide the
piece of paper into infinitesimal pieces of area dA. We will assume that the
piece centered at x with area dA gets power per unit projected area L(x). In
this case, total power would add up the contributions of all infinitesimal pieces:∫
A
L(x)dA cos θ.
However, till now we have assumed that we are getting a constant amount

of light from a fixed direction. But in general, the paper will receive different
amounts of light from different directions. A direction in 2D is represented
by an angle, but in 3D it is represented by a solid angle. Just as the angle
subtended by an arc is defined as arc length divided by the radius, solid angles
are subtended by surface patches on a sphere and are defined as patch area
divided by the radius squared. Solid angle varies between 0 and 4π, and the
unit is steradians.

As before, we can divide the set of all directions (i.e., all solid angles Ω)
at a point into infinitesimal cones of directions, represented by an infinitesimal
solid angle dΩ. We can then assume that each infinitesimal patch of paper at
location x receives a constant amount of power per unit projected area per unit
solid angle) from the infinitesimal cone in the direction Ω denoted by L(x,Ω).
In this case, adding up the contributions of all infinitesimal pieces again, the
total power is Φ =

∫
S

∫
A
L(x,Ω)dΩdA cos θ.

The quantity L(x,Ω), which denotes the power per unit area per unit solid
angle incident on a surface patch at x in direction Ω, is called the radiance.
Recall that a pixel in a pinhole camera is a point on a screen that receives light
from a particular direction: such a pixel records the incoming radiance at that
point in that direction.

Here we were defining the incoming radiance, we can similarly define the
outgoing radiance.

1.1 Conservation of radiance

Radiance has the property that it is conserved along a ray. To see this, consider
a ray of light. This ray of light goes from a point s on one surface to a point
r on another surface a distance R away. Let us assume that the ray from s to
r is in direction θs, φs with respect to the first surface patch, and in direction
θr, φr with respect to the second surface patch. Consider an infinitesimal surface
patch of area dAs on the first surface, and another of area dAr on the second
surface.

From the point of view of the first surface patch, let’s calculate the total

2



power it sends to the second surface patch. For this, we need the outgoing radi-
ance in the first patch in the direction of the second, the solid angle subtended
by the second patch on the first, and the projected area of the first patch.

To compute the solid angle subtended by second surface patch at s, we want
to project this area onto a sphere centered at s. Let us do this projection onto a
sphere centered at s of radius R. Because this patch is infinitesimally small and
thus much smaller than the radius R and thus the sphere, instead of projecting
onto the sphere, we can project it onto the tangent plane of the sphere. This
tangent plane is perpendicular to the radius vector, which in this case is the
vector from s to r. The angle between this vector and the surface normal at
dAr is θr. Thus the area of the second patch projected onto the sphere is
dAr cos θ, and the solid angle subtended is dAr cos θ

R2

The rojected area of first surface patch in direction (θs, φs) is dAs cos θs.
Total power is then Lo(s, θs, φs)dAs cos θs

dAr cos θr
R2 .

From the point of view of the second surface patch, let’s calculate the total
power it receives from the first patch. Solid angle subtended by the first surface
patch at r is dAs cos θs

R2 . Projected area of second surface patch in direction

(θr, φr) is dAr cos θ2. Total incident power is then Li(rθr, φr)dAr cos θr
dAs cos θs

R2 .
Equating the two, we have that Lo(s, θs, φs) = Li(r, θr, φr).
This property means that we can track radiance along a ray. A camera pixel

records the radiance of the incoming ray, and this property means that this
is the same as the outgoing radiance at the world point the pixel sees, in the
direction of the pinhole.

2 Relating input and output light

In general, the physics of how light incident on a surface is radiated out is very
complex. However, there are two simple cases:

Specular surfaces : Specular surfaces act like mirrors. Every incident ray
incident at an angle θ is reflected along a fixed direction that makes the same
angle with the normal and is co-planar with the normal and the incident ray.
Concretely, for a given outgoing direction θo, φo, there is a fixed input direction
θi, φi:

Lo(x, θo, φo) = Li(x, θi, φi) (1)

Lambertian surfaces A lambertian surface is one where the output radiance
is the same in all directions. If there is incident light of power I in direction l̂,
and the surface normal is n̂, then the outgoing radiance in all directions is:

Lo(x, θo, φo) = ρI l̂ · n̂ (2)

ρ here is called the albedo, and is the fraction of incident energy that is reflected
by the object (as opposed to absorbed). For example, a black tyre has a low
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albedo, whereas snow has a high albedo. A lambertian surface looks like dull
rubber.

Because a lambertian surface has the same radiance in all directions, this
means that different cameras in different locations will see the same color for
such a surface. Several computer vision algorithms will assume that objects are
lambertian for this reason.

3 From image to shape

The expression in Equation 2 is a product of two parts: the albedo ρ, which
essentially corresponds to the intrinsic color of the object, and I l̂ · n̂, which
depends on the lighting and the geometry. Since pixels in an image also record
the radiance, if we assume all objects in the scene are lambertian, the image itself
is a product of two images: the albedo or reflectance image, which corresponds
to the intrinsic color of the object, and the shading image, which is only a
function of the lighting and geometry.

I = Ir � Is (3)

Ir and Is are called intrinsic images, and this decomposition is called an intrinsic
image decomposition.

However, in general, this decomposition into reflectance and shading images
is hard. Equation 3 implies that the actual color of objects in an image depends
not just on the objects intrinsic color, but also on shape and lighting. This makes
it hard to identify the same object viewed under different lighting conditions,
since the color seen in the image can change quite a bit.

4 Color and wavelength

We have talked till now of grayscale images, and just intensity. However, all
the above quantities can be expressed as additionally functions of wavelength /
color.
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