## Pyramid blending


(d)

(h)

(1)

## Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.


## The Laplacian Pyramid

$$
L_{i}=G_{i}-\operatorname{expand}\left(G_{i+1}\right)
$$

Gaussian Pyramid $\quad G_{i}=L_{i}+\operatorname{expand}\left(G_{i+1}\right) \quad$ Laplacian Pyramid


## Alpha Blending



Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumb er=7531\&prod=JNL\&arnumber=310740\&arSt=83\&ared=87\&a $\underline{\text { rAuthor=Blinn\%2C+J.F. }}$

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the ( $\alpha$ premultiplied) $R G B \alpha$ values at each pixel
2. normalize: divide each pixel's accumulated RGB by its $\alpha$ value

Q: what if $\alpha=0$ ?

## Poisson Image Editing



- For more info: Perez et al, SIGGRAPH 2003
- http://research.microsoft.com/vision/cambridge/papers/perez siggraph03.pdf


## Some panorama examples

Before Siggraph Deadline:
http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/d ougz/siggraph-hires.html

## Magic: ghost removal


M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

## Magic: ghost removal


M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

## Some panorama examples

- Every image on Google Streetview



## Questions?

CS6670: Computer Vision Noah Snavely

## Lecture 8: Single-view Modeling



## Projective geometry



Ames Room

- Readings
- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1-23.5, 23.10)
- available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf


## Projective geometry—what's it good for?

- Uses of projective geometry
- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Camera pose estimation
- Object recognition


Paolo Uccello

## Applications of projective geometry



Vermeer's Music Lesson


## Measurements on planes



Approach: unwarp then measure

## Point and line duality

- A line $I$ is a homogeneous 3 -vector
- It is $\perp$ to every point (ray) $\mathbf{p}$ on the line: I $\mathbf{p}=0$


What is the line $\mathbf{I}$ spanned by rays $\boldsymbol{p}_{1}$ and $\mathbf{p}_{2}$ ?

- $I$ is $\perp$ to $p_{1}$ and $p_{2} \Rightarrow I=p_{1} \times p_{2}$
- I can be interpreted as a plane normal

What is the intersection of two lines $\boldsymbol{I}_{1}$ and $\boldsymbol{I}_{2}$ ?

- $p$ is $\perp$ to $I_{1}$ and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

## Ideal points and lines



- Ideal point ("point at infinity")
$-p \cong(x, y, 0)$ - parallel to image plane
- It has infinite image coordinates

Ideal line

- I $\cong(a, b, 0)$ - parallel to image plane
- Corresponds to a line in the image (finite coordinates)
- goes through image origin (principle point)


## 3D projective geometry

- These concepts generalize naturally to 3D
- Homogeneous coordinates
- Projective 3D points have four coords: $\mathbf{P}=(X, Y, Z, W)$
- Duality
- A plane $\mathbf{N}$ is also represented by a 4-vector
- Points and planes are dual in 3D: $\mathbf{N} \mathbf{P}=0$
- Three points define a plane, three planes define a point


## 3D to 2D: perspective projection

Projection: $\quad \mathbf{p}=\left[\begin{array}{c}w x \\ w y \\ w\end{array}\right]=\left[\begin{array}{llll}* & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\boldsymbol{\Pi P}$

## Vanishing points (1D)



- Vanishing point
- projection of a point at infinity
- can often (but not always) project to a finite point in the image

camera<br>center



## Vanishing points



- Properties
- Any two parallel lines (in 3D) have the same vanishing point $\mathbf{v}$
- The ray from $\mathbf{C}$ through $\mathbf{v}$ is parallel to the lines
- An image may have more than one vanishing point
- in fact, every image point is a potential vanishing point


## Two point perspective



## Three point perspective



## Questions?

## Vanishing lines



- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes (can) define different vanishing lines


## Vanishing lines



- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes (can) define different vanishing lines


## Computing vanishing points <br> 

## Computing vanishing points <br> 

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right]
$$

- Properties $\mathbf{v}=\boldsymbol{\Pi} \mathbf{P}_{\infty}$
- $\mathbf{P}_{\infty}$ is a point at infinity, $\mathbf{v}$ is its projection
- Depends only on line direction
- Parallel lines $\mathbf{P}_{0}+t \mathbf{D}, \mathbf{P}_{1}+\mathrm{tD}$ intersect at $\mathbf{P}_{\infty}$


## Computing vanishing lines




- Properties
- I is intersection of horizontal plane through $\mathbf{C}$ with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as $\mathbf{C}$ project to $\mathbf{I}$
- points higher than C project above I
- Provides way of comparing height of objects in the scene



## Fun with vanishing points



$$
111
$$

$$
118
$$

Perspective cues



## Comparing heights



## Measuring height



## Computing vanishing points (from lines)



- Intersect $p_{1} q_{1}$ with $p_{2} q_{2}$

$$
v=\left(p_{1} \times q_{1}\right) \times\left(p_{2} \times q_{2}\right)
$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this:
- http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt


## Measuring height without a ruler



Compute $Z$ from image measurements

- Need more than vanishing points to do this


## The cross ratio

- A Projective Invariant
- Something that does not change under projective transformations (including perspective projection)
The cross-ratio of 4 collinear points


$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|}
$$

$$
\mathbf{P}_{i}=\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Can permute the point ordering

$$
\frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}
$$

- $4!=24$ different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

## Measuring height



## Measuring height



## 3D Modeling from a photograph



St. Jerome in his Study, H. Steenwick

## 3D Modeling from a photograph



## 3D Modeling from a photograph



Flagellation, Piero della Francesca

## 3D Modeling from a photograph


video by Antonio Criminisi

## 3D Modeling from a photograph



## Questions?

- 3-minute break


## Camera calibration

- Goal: estimate the camera parameters
- Version 1: solve for projection matrix

$$
\mathbf{X}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- Version 2: solve for camera parameters separately
- intrinsics (focal length, principle point, pixel size)
- extrinsics (rotation angles, translation)
- radial distortion


## Vanishing points and projection matrix



- $\boldsymbol{\pi}_{1}=\boldsymbol{\Pi}\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}=\mathbf{v}_{\mathrm{x}}$ (X vanishing point)
- similarly, $\boldsymbol{\pi}_{2}=\mathbf{v}_{\mathrm{Y}}, \boldsymbol{\pi}_{3}=\mathbf{v}_{\mathrm{Z}}$
- $\boldsymbol{\pi}_{4}=\boldsymbol{\Pi}\left[\begin{array}{lll}0 & 0 & 0\end{array} 1\right]^{T}=$ projection of world origin

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
\mathbf{v}_{X} & \mathbf{v}_{Y} & \mathbf{v}_{Z} & \mathbf{o}
\end{array}\right]
$$

Not So Fast! We only know v's up to a scale factor

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
a \mathbf{v}_{X} & b \mathbf{v}_{Y} & c \mathbf{v}_{Z} & \mathbf{o}
\end{array}\right]
$$

- Can fully specify by providing 3 reference points


## Calibration using a reference object

- Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image


Issues

- must know geometry very accurately
- must know 3D->2D correspondence


## Estimating the projection matrix

- Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image


$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

## Direct linear calibration

$$
\begin{gathered}
{\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23}
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]} \\
u_{i}=\frac{m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}} \\
v_{i}=\frac{m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}} \\
u_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03} \\
v_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}
\end{gathered}
$$

$$
\left[\begin{array}{cccccccccccc}
X_{i} & Y_{i} & Z_{i} & 1 & 0 & 0 & 0 & 0 & -u_{i} X_{i} & -u_{i} Y_{i} & -u_{i} Z_{i} & -u_{i} \\
0 & 0 & 0 & 0 & X_{i} & Y_{i} & Z_{i} & 1 & -v_{i} X_{i} & -v_{i} Y_{i} & -v_{i} Z_{i} & -v_{i}
\end{array}\right]\left[\begin{array}{l}
m_{00} \\
m_{01} \\
m_{02} \\
m_{03} \\
m_{10} \\
m_{11} \\
m_{12} \\
m_{13} \\
m_{20} \\
m_{21} \\
m_{22} \\
m_{23}
\end{array}\right]=\left[\begin{array}{lll}
0 \\
0
\end{array}\right]
$$

## Direct linear calibration

$\left[\begin{array}{cccccccccccc}X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1} X_{1} & -u_{1} Y_{1} & -u_{1} Z_{1} & -u_{1} \\ 0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -v_{1} X_{1} & -v_{1} Y_{1} & -v_{1} Z_{1} & -v_{1} \\ X_{n} & Y_{n} & Z_{n} & 1 & 0 & 0 & 0 & 0 & -u_{n} X_{n} & -u_{n} Y_{n} & -u_{n} Z_{n} & -u_{n} \\ 0 & 0 & 0 & 0 & X_{n} & Y_{n} & Z_{n} & 1 & -v_{n} X_{n} & -v_{n} Y_{n} & -v_{n} Z_{n} & -v_{n}\end{array}\right]\left[\begin{array}{l}m_{00} \\ m_{01} \\ m_{02} \\ m_{03} \\ m_{10} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right]$
Can solve for $\mathrm{m}_{\mathrm{ij}}$ by linear least squares

- use eigenvector trick that we used for homographies


## Direct linear calibration

- Advantage:
- Very simple to formulate and solve
- Disadvantages:
- Doesn't tell you the camera parameters
- Doesn't model radial distortion
- Hard to impose constraints (e.g., known f)
- Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
- $E$ is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques


## Alternative: multi-plane calibration



Images courtesy Jean-Yves Bouguet, Intel Corp.

## Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online! (including in OpenCV)
- Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib doc/index.html
- Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/


## Some Related Techniques

- Image-Based Modeling and Photo Editing
- Mok et al., SIGGRAPH 2001
- http://graphics.csail.mit.edu/ibedit/
- Single View Modeling of Free-Form Scenes
- Zhang et al., CVPR 2001
- http://grail.cs.washington.edu/projects/svm/
- Tour Into The Picture
- Anjyo et al., SIGGRAPH 1997
- http://koigakubo.hitachi.co.jp/little/DL TipE.html


## More than one view?





Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923



Mark Twain at Pool Table", no date, UCR Museum of Photography


## Epipolar geometry



Two images captured by a purely horizontal translating camera (rectified stereo pair)

$$
x_{2}-x_{1}=\text { the disparity of pixel }\left(x_{1}, y_{1}\right)
$$

## Stereo matching algorithms

- Match Pixels in Conjugate Epipolar Lines
- Assume brightness constancy
- This is a tough problem
- Numerous approaches
- A good survey and evaluation: http://www.middlebury.edu/stereo/


## Your basic stereo algorithm



For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

## Window size



$\mathrm{W}=3$

$\mathrm{W}=20$

## Better results with adaptive window

- T. Kanade and M. Okutomi, A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment,, Proc. International Conference on Robotics and Automation, 1991.
- D. Scharstein and R. Szeliski. Stereo matching with nonlinear diffusion. International Journal of Computer Vision, 28(2):155-174, July 1998


## Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth


Scene


Ground truth

## Results with window search



Window-based matching
Ground truth (best window size)

## Better methods exist...



State of the art method
Ground truth
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

For the latest and greatest: http://www.middlebury.edu/stereo/

## Stereo as energy minimization



- What defines a good stereo correspondence?

1. Match quality

- Want each pixel to find a good match in the other image

2. Smoothness

- If two pixels are adjacent, they should (usually) move about the same amount


## Stereo as energy minimization

- Expressing this mathematically

1. Match quality

- Want each pixel to find a good match in the other image

$$
\text { matchCost }=\sum_{x, y}\left\|I(x, y)-J\left(x+d_{x y}, y\right)\right\|
$$

2. Smoothness

- If two pixels are adjacent, they should (usually) move about the same amount

$$
\text { smoothnessCost }=\sum_{\text {neighbor pixels } p, q}\left|d_{p}-d_{q}\right|
$$

- We want to minimize Energy = matchCost + smoothnessCost
- This is a special type of energy function known as an MRF (Markov Random Field)
- Effective and fast algorithms have been recently developed:
- Graph cuts, belief propagation....
- for more details (and code): http://vision.middlebury.edu/MRF/
- Great tutorials available online (including video of talks)


## Depth from disparity



$$
\text { disparity }=x-x^{\prime}=\frac{\text { baseline } * f}{z}
$$

## Real-time stereo



Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

- Used for robot navigation (and other tasks)
- Several software-based real-time stereo techniques have been developed (most based on simple discrete search)


## Stereo reconstruction pipeline

- Steps
- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions


## Active stereo with structured light



Li Zhang's one-shot stereo


- Project "structured" light patterns onto the object
- simplifies the correspondence problem


## Laser scanning




Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

- Optical triangulation
- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning


## Laser scanned models



The Digital Michelangelo Project, Levoy et al.

## Laser scanned models



The Digital Michelangelo Project, Levoy et al.

## Laser scanned models



The Digital Michelangelo Project, Levoy et al.

## Laser scanned models



The Digital Michelangelo Project, Levoy et al.

