
© 2012 Steve Marschner

CS6640 Computational Photography

16. Camera shake removal

1



Cornell CS6640 Fall 2012

Approaches to shake deblurring
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• Measure shake vs. fully blind approach

• Estimate kernel and deconvolve vs. full-image estimation
• In this lecture:

BenEzra & Nayar 2004: measured, direct deconvolve
Fergus et al. 2006: blind kernel estimation
Shan et al. 2008: blind, full-image estimation
Joshi et al. 2010: measured, semi-blind kernel estimation
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2-camera rig

4In Figs. 9a, 10a, 11a, and 12a, we see the inputs for the
deblurring algorithm, which includes the primary detector’s
blurred image and a sequence of low-resolution frames
captured by the secondary detector. Figs. 9b, 10b, 11b, and
12b show the computed PSFs for these images. The path
shown in these figures is the camera motion, while the colors
code the percentage of the total energy at each point along the
path. Notice the complexmotion paths and the sparse energy
distributions in these PSFs. Figs. 9c, 10c, 11c, and 12c show the
deblurring results. Notice the details that appear in the
magnified subimages compared to the original blurred
images and the ground truth images shown in Figs. 9d,
10d, and 12d, that were takenwithout motion blur by using a
tripod. Also, notice the text on the building shown in the left
column of Fig. 11, which is completely unreadable in the
blurred image shown in Fig. 11a, and clearly readable in the
deblurred image show in Fig. 11c. Some increase of noise
level and small deconvolution artifacts are observed and are
expected side effects of the deconvolution algorithm. Over-
all, however, in all the experiments the deblurred images
show significant improvement in image quality and are very
close to the ground truth images.

9 APPLICABILITY TO DEBLURRING OF

MOVING OBJECTS

We now address the problem of motion blur due to an object
moving in front of a stationary (nonblurred) background.
This problem is difficult since the moving object “blends”
with the background and, therefore, it is not enough to know
theobject’s PSF todeblur the image; theblurredobjectmust be
separated from the background before it can be deblurred.
This blending effect is illustrated in Fig. 13. Figs. 13a and 13b
show the ground truth image and a simulated image with a
blurred moving object (balloons). Fig. 13c shows the part of
the image that contains the blurred foreground object. Note
that the blending of the foreground and the background is
clearly visible. Fig. 13d shows the result of deconvolving the
foreground object with the known PSF. The resulting image
has strong artifacts and does not look natural as seen in the
composite image in Fig. 13e. Note that we have assumed that
the extent of the blur and the shape of the mask used for
compositing the deblurred foreground and the clear back-
ground are known. However, it is not obvious how these can
be obtained from the blurred image in Fig. 13b without
additional information.

Assuming that the blending is linear, we can express the
correct deblurring operation in the presence of blending as:

O ¼ ðI # ðB $M % SÞÞ %#1 S þB $ !MM; ð6Þ

whereO is the deblurred image, I is the blurred input image,
S is the PSF,%#1 denotes deconvolution,M is a segmentation
mask for the shape of the foreground (nonblurred) object,
B is a clear and nonblurred background image, % denotes
2D convolution, and !XX is the complement of X.

Note that the deblurring given by (6) requires a back-
ground image which is not only nonblurred (this is an
assumption) but also void of any foreground moving object.
A clear backgroundcanbeobtained in severalways.Oneway
is to capture a picture of the backgroundwhen no foreground
objects are present. In scenarioswhere foreground objects are
alwayspresent, one cancapture a sequenceofhigh-resolution
images which are sufficiently sparse in time, and apply a

694 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004

Fig. 8. The hybrid camera prototype used in the experiments is a rig of
two cameras. (a) The primary system consists of a 3M pixel Nikon
CoolPix camera (b) equipped with a (6 Kenko zoom lens. (c) The
secondary system is a Sony DV camcorder. The Sony images were
reduced in size to simulate a low-resolution camera.

Fig. 9. Experimental results for indoor 3D objects scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution.
(c) The deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.
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median filter to the sequence. The hybrid camera can provide
an accurate PSF for the moving object; this can be done by
applying a tracking algorithm to the low-resolution (high
frame-rate) sequence. Since we assume shift invariance, only
a single feature needs to be tracked. Hybrid imaging can also
provide a low-resolution mask (shape) of the foreground
object using the secondary detector’s image. This is true only
for the designed shown in Figs. 5a and 5b.

Fig. 14 shows how such a low-resolution mask can be
effective in deblurring the image shown in Fig. 13b image
using (6). Fig. 14a shows the blending mask M ! S of the
foreground. Figs. 14b and 14c show the background
component B "M ! S and the foreground component I #
ðB "M ! SÞÞ of the blurred image. Fig. 14d shows the
deblurred foreground object and, finally, Fig. 14e shows the
composite deblurred image. We can see that the low-

resolution mask was effective in avoiding any undesired
blending of the foreground and the background.

The extension of this method to a blurred background
scenario, where it is possible to obtain a clear nonblurred, or
a clear deblurred image of the background, is straightfor-
ward. In this case, (6) becomes:

O ¼ ðI # ððB! SbÞ "M ! SfÞÞ !#1 Sf þB " !MM; ð7Þ

where Sb and Sf are the PSFs of the background and the
foreground, respectively.

10 CONCLUSION

In this paper, we have presented a method for motion
deblurring by using hybrid imaging. This method exploits

BEN-EZRA AND NAYAR: MOTION-BASED MOTION DEBLURRING 695

Fig. 11. Experimental results for outdoor building scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its paths and its energy distribution.
(c) The deblurring result. Notice the clarity of the text. (d) Ground truth image that were captured without motion blur using a tripod.

Fig. 10. Experimental results for indoor face scene. (a) Input images, including the motion blurred image from the primary detector and a sequence of
low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution. (c) The
deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.
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In Figs. 9a, 10a, 11a, and 12a, we see the inputs for the
deblurring algorithm, which includes the primary detector’s
blurred image and a sequence of low-resolution frames
captured by the secondary detector. Figs. 9b, 10b, 11b, and
12b show the computed PSFs for these images. The path
shown in these figures is the camera motion, while the colors
code the percentage of the total energy at each point along the
path. Notice the complexmotion paths and the sparse energy
distributions in these PSFs. Figs. 9c, 10c, 11c, and 12c show the
deblurring results. Notice the details that appear in the
magnified subimages compared to the original blurred
images and the ground truth images shown in Figs. 9d,
10d, and 12d, that were takenwithout motion blur by using a
tripod. Also, notice the text on the building shown in the left
column of Fig. 11, which is completely unreadable in the
blurred image shown in Fig. 11a, and clearly readable in the
deblurred image show in Fig. 11c. Some increase of noise
level and small deconvolution artifacts are observed and are
expected side effects of the deconvolution algorithm. Over-
all, however, in all the experiments the deblurred images
show significant improvement in image quality and are very
close to the ground truth images.

9 APPLICABILITY TO DEBLURRING OF

MOVING OBJECTS

We now address the problem of motion blur due to an object
moving in front of a stationary (nonblurred) background.
This problem is difficult since the moving object “blends”
with the background and, therefore, it is not enough to know
theobject’s PSF todeblur the image; theblurredobjectmust be
separated from the background before it can be deblurred.
This blending effect is illustrated in Fig. 13. Figs. 13a and 13b
show the ground truth image and a simulated image with a
blurred moving object (balloons). Fig. 13c shows the part of
the image that contains the blurred foreground object. Note
that the blending of the foreground and the background is
clearly visible. Fig. 13d shows the result of deconvolving the
foreground object with the known PSF. The resulting image
has strong artifacts and does not look natural as seen in the
composite image in Fig. 13e. Note that we have assumed that
the extent of the blur and the shape of the mask used for
compositing the deblurred foreground and the clear back-
ground are known. However, it is not obvious how these can
be obtained from the blurred image in Fig. 13b without
additional information.

Assuming that the blending is linear, we can express the
correct deblurring operation in the presence of blending as:

O ¼ ðI # ðB $M % SÞÞ %#1 S þB $ !MM; ð6Þ

whereO is the deblurred image, I is the blurred input image,
S is the PSF,%#1 denotes deconvolution,M is a segmentation
mask for the shape of the foreground (nonblurred) object,
B is a clear and nonblurred background image, % denotes
2D convolution, and !XX is the complement of X.

Note that the deblurring given by (6) requires a back-
ground image which is not only nonblurred (this is an
assumption) but also void of any foreground moving object.
A clear backgroundcanbeobtained in severalways.Oneway
is to capture a picture of the backgroundwhen no foreground
objects are present. In scenarioswhere foreground objects are
alwayspresent, one cancapture a sequenceofhigh-resolution
images which are sufficiently sparse in time, and apply a

694 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004

Fig. 8. The hybrid camera prototype used in the experiments is a rig of
two cameras. (a) The primary system consists of a 3M pixel Nikon
CoolPix camera (b) equipped with a (6 Kenko zoom lens. (c) The
secondary system is a Sony DV camcorder. The Sony images were
reduced in size to simulate a low-resolution camera.

Fig. 9. Experimental results for indoor 3D objects scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution.
(c) The deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.
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median filter to the sequence. The hybrid camera can provide
an accurate PSF for the moving object; this can be done by
applying a tracking algorithm to the low-resolution (high
frame-rate) sequence. Since we assume shift invariance, only
a single feature needs to be tracked. Hybrid imaging can also
provide a low-resolution mask (shape) of the foreground
object using the secondary detector’s image. This is true only
for the designed shown in Figs. 5a and 5b.

Fig. 14 shows how such a low-resolution mask can be
effective in deblurring the image shown in Fig. 13b image
using (6). Fig. 14a shows the blending mask M ! S of the
foreground. Figs. 14b and 14c show the background
component B "M ! S and the foreground component I #
ðB "M ! SÞÞ of the blurred image. Fig. 14d shows the
deblurred foreground object and, finally, Fig. 14e shows the
composite deblurred image. We can see that the low-

resolution mask was effective in avoiding any undesired
blending of the foreground and the background.

The extension of this method to a blurred background
scenario, where it is possible to obtain a clear nonblurred, or
a clear deblurred image of the background, is straightfor-
ward. In this case, (6) becomes:

O ¼ ðI # ððB! SbÞ "M ! SfÞÞ !#1 Sf þB " !MM; ð7Þ

where Sb and Sf are the PSFs of the background and the
foreground, respectively.

10 CONCLUSION

In this paper, we have presented a method for motion
deblurring by using hybrid imaging. This method exploits

BEN-EZRA AND NAYAR: MOTION-BASED MOTION DEBLURRING 695

Fig. 11. Experimental results for outdoor building scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its paths and its energy distribution.
(c) The deblurring result. Notice the clarity of the text. (d) Ground truth image that were captured without motion blur using a tripod.

Fig. 10. Experimental results for indoor face scene. (a) Input images, including the motion blurred image from the primary detector and a sequence of
low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution. (c) The
deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.
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the fundamental trade off between spatial and temporal
resolution to obtain ego-motion information. We use this
information to deblur the image by estimating the PSF that
causes the blur. Simulation and real test results show that,
with minimal resources, hybrid imaging outperforms
previous approaches to the motion blur problem.

Our approach has several application. It can be applied to
aerial surveillance systems where vehicle translation, which
cannot be corrected by gyro-based stabilization systems, can
greatly reduce the quality of acquired images. The method
also provides a motion deblurring solution for consumer
level digital cameras. These cameras often have small yet

696 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004

Fig. 12. Experimental results for outdoor tower scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution.
(c) The deblurring result. (d) Ground truth image that was captured without motion blur using a tripod.

Fig. 13. Object blending problem. (a) Nonblurred ground truth image. (b) Synthetically blurred image. (c) Blurred foreground image. The nonmasked
area is exactly the blur object extent. Notice that the foreground is blended with the background. (d) Deblurring of the foreground object. The artifacts
due to blending are clearly visible. (e) Composite of the clear background with the deblurred foreground using a ground truth composite mask. The
resulting image does not look natural.
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above assumptions are violated; however, they may be acceptable to
consumers in some cases, and a professional designer could touch-
up the results. In contrast, the original images are typically unus-
able, beyond touching-up — in effect our method can help “rescue”
shots that would have otherwise been completely lost.

2 Related Work

The task of deblurring an image is image deconvolution; if the blur
kernel is not known, then the problem is said to be “blind”. For
a survey on the extensive literature in this area, see [Kundur and
Hatzinakos 1996]. Existing blind deconvolution methods typically
assume that the blur kernel has a simple parametric form, such as
a Gaussian or low-frequency Fourier components. However, as il-
lustrated by our examples, the blur kernels induced during camera
shake do not have simple forms, and often contain very sharp edges.
Similar low-frequency assumptions are typically made for the input
image, e.g., applying a quadratic regularization. Such assumptions
can prevent high frequencies (such as edges) from appearing in the
reconstruction. Caron et al. [2002] assume a power-law distribution
on the image frequencies; power-laws are a simple form of natural
image statistics that do not preserve local structure. Some methods
[Jalobeanu et al. 2002; Neelamani et al. 2004] combine power-laws
with wavelet domain constraints but do not work for the complex
blur kernels in our examples.

Deconvolution methods have been developed for astronomical im-
ages [Gull 1998; Richardson 1972; Tsumuraya et al. 1994; Zarowin
1994], which have statistics quite different from the natural scenes
we address in this paper. Performing blind deconvolution in this do-
main is usually straightforward, as the blurry image of an isolated
star reveals the point-spread-function.

Another approach is to assume that there are multiple images avail-
able of the same scene [Bascle et al. 1996; Rav-Acha and Peleg
2005]. Hardware approaches include: optically stabilized lenses
[Canon Inc. 2006], specially designed CMOS sensors [Liu and
Gamal 2001], and hybrid imaging systems [Ben-Ezra and Nayar
2004]. Since we would like our method to work with existing cam-
eras and imagery and to work for as many situations as possible, we
do not assume that any such hardware or extra imagery is available.

Recent work in computer vision has shown the usefulness of heavy-
tailed natural image priors in a variety of applications, including
denoising [Roth and Black 2005], superresolution [Tappen et al.
2003], intrinsic images [Weiss 2001], video matting [Apostoloff
and Fitzgibbon 2005], inpainting [Levin et al. 2003], and separating
reflections [Levin and Weiss 2004]. Each of these methods is effec-
tively “non-blind”, in that the image formation process (e.g., the
blur kernel in superresolution) is assumed to be known in advance.

Miskin and MacKay [2000] perform blind deconvolution on line art
images using a prior on raw pixel intensities. Results are shown for
small amounts of synthesized image blur. We apply a similar varia-
tional scheme for natural images using image gradients in place of
intensities and augment the algorithm to achieve results for photo-
graphic images with significant blur.

3 Image model

Our algorithm takes as input a blurred input image B, which is as-
sumed to have been generated by convolution of a blur kernel K
with a latent image L plus noise:

B = K⊗L+N (1)

where ⊗ denotes discrete image convolution (with non-periodic
boundary conditions), and N denotes sensor noise at each pixel.
We assume that the pixel values of the image are linearly related to
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Figure 2: Left: A natural scene. Right: The distribution of gra-
dient magnitudes within the scene are shown in red. The y-axis
has a logarithmic scale to show the heavy tails of the distribution.
The mixture of Gaussians approximation used in our experiments
is shown in green.

the sensor irradiance. The latent image L represents the image we
would have captured if the camera had remained perfectly still; our
goal is to recover L from B without specific knowledge of K.

In order to estimate the latent image from such limited measure-
ments, it is essential to have some notion of which images are a-
priori more likely. Fortunately, recent research in natural image
statistics have shown that, although images of real-world scenes
vary greatly in their absolute color distributions, they obey heavy-
tailed distributions in their gradients [Field 1994]: the distribution
of gradients has most of its mass on small values but gives sig-
nificantly more probability to large values than a Gaussian distri-
bution. This corresponds to the intuition that images often con-
tain large sections of constant intensity or gentle intensity gradi-
ent interrupted by occasional large changes at edges or occlusion
boundaries. For example, Figure 2 shows a natural image and a
histogram of its gradient magnitudes. The distribution shows that
the image contains primarily small or zero gradients, but a few gra-
dients have large magnitudes. Recent image processing methods
based on heavy-tailed distributions give state-of-the-art results in
image denoising [Roth and Black 2005; Simoncelli 2005] and su-
perresolution [Tappen et al. 2003]. In contrast, methods based on
Gaussian prior distributions (including methods that use quadratic
regularizers) produce overly smooth images.

We represent the distribution over gradient magnitudes with a zero-
mean mixture-of-Gaussians model, as illustrated in Figure 2. This
representation was chosen because it can provide a good approxi-
mation to the empirical distribution, while allowing a tractable es-
timation procedure for our algorithm.

4 Algorithm

There are two main steps to our approach. First, the blur kernel
is estimated from the input image. The estimation process is per-
formed in a coarse-to-fine fashion in order to avoid local minima.
Second, using the estimated kernel, we apply a standard deconvo-
lution algorithm to estimate the latent (unblurred) image.

The user supplies four inputs to the algorithm: the blurred image
B, a rectangular patch within the blurred image, an upper bound
on the size of the blur kernel (in pixels), and an initial guess as to
orientation of the blur kernel (horizontal or vertical). Details of how
to specify these parameters are given in Section 4.1.2.

Additionally, we require input image B to have been converted to
a linear color space before processing. In our experiments, we ap-
plied inverse gamma-correction1 with γ = 2.2. In order to esti-
mate the expected blur kernel, we combine all the color channels
of the original image within the user specified patch to produce a
grayscale blurred patch P.

1Pixel value = (CCD sensor value)1/γ

788
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Figure 4: Left: The whiteboard test scene with dots in each corner.
Right: Dots from the corners of images taken by different people.
Within each image, the dot trajectories are very similar suggesting
that image blur is well modeled as a spatially invariant convolution.

Figure 5: Top: A scene with a small blur. The patch selected by
the user is indicated by the gray rectangle. Bottom: Output of our
algorithm and the inferred blur kernel. Note the crisp text.

gray rectangles show the patch used to infer the blur kernel, chosen
to have many image details but few saturated pixels. The inferred
kernels are shown in the corner of the deblurred images.

Large blurs. Unlike existing blind deconvolution methods our
algorithm can handle large, complex blurs. Figures 7 and 9 show
our algorithm successfully inferring large blur kernels. Figure 1
shows an image with a complex tri-lobed blur, 30 pixels in size
(shown in Figure 10), being deblurred.

Figure 6: Top: A scene with complex motions. While the motion of
the camera is small, the child is both translating and, in the case of
the arm, rotating. Bottom: Output of our algorithm. The face and
shirt are sharp but the arm remains blurred, its motion not modeled
by our algorithm.

As demonstrated in Figure 8, the true blur kernel is occasionally
revealed in the image by the trajectory of a point light source trans-
formed by the blur. This gives us an opportunity to compare the
inferred blur kernel with the true one. Figure 10 shows four such
image structures, along with the inferred kernels from the respec-
tive images.

We also compared our algorithm against existing blind deconvo-
lution algorithms, running Matlab’s deconvblind routine, which
provides implementations of the methods of Biggs and Andrews
[1997] and Jansson [1997]. Based on the iterative Richardson-Lucy
scheme, these methods also estimate the blur kernel; alternating be-
tween holding the blur constant and updating the image and vice-
versa. The results of this algorithm, applied to the fountain and cafe
scenes are shown in Figure 11 and are poor compared to the output
of our algorithm, shown in Figures 1 and 13.

Images with significant saturation. Figures 12 and 13 con-
tain large areas where the true intensities are not observed, owing
to the dynamic range limitations of the camera. The user-selected
patch used for kernel analysis must avoid the large saturated re-
gions. While the deblurred image does have some artifacts near
saturated regions, the unsaturated regions can still be extracted.
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4.1 Estimating the blur kernel

Given the grayscale blurred patch P, we estimate K and the la-
tent patch image Lp by finding the values with highest probabil-
ity, guided by a prior on the statistics of L. Since these statistics
are based on the image gradients rather than the intensities, we per-
form the optimization in the gradient domain, using ∇Lp and ∇P,
the gradients of Lp and P. Because convolution is a linear opera-
tion, the patch gradients ∇P should be equal to the convolution of
the latent gradients and the kernel: ∇P = ∇Lp ⊗K, plus noise. We
assume that this noise is Gaussian with variance σ 2.

As discussed in the previous section, the prior p(∇Lp) on the la-
tent image gradients is a mixture of C zero-mean Gaussians (with
variance vc and weight πc for the c-th Gaussian). We use a sparsity
prior p(K) for the kernel that encourages zero values in the kernel,
and requires all entries to be positive. Specifically, the prior on ker-
nel values is a mixture of D exponential distributions (with scale
factors λd and weights πd for the d-th component).

Given the measured image gradients ∇P, we can write the posterior
distribution over the unknowns with Bayes’ Rule:

p(K,∇Lp|∇P) ∝ p(∇P|K,∇Lp)p(∇Lp)p(K) (2)

= ∏
i
N(∇P(i)|(K⊗∇Lp(i)),σ2) (3)

∏
i

C

∑
c=1

πcN(∇Lp(i)|0,vc)∏
j

D

∑
d=1

πdE(K j|λd)

where i indexes over image pixels and j indexes over blur kernel
elements. N and E denote Gaussian and Exponential distributions
respectively. For tractability, we assume that the gradients in ∇P
are independent of each other, as are the elements in ∇Lp and K.

A straightforward approach to deconvolution is to solve for the
maximum a-posteriori (MAP) solution, which finds the kernel K
and latent image gradients ∇L that maximizes p(K,∇Lp|∇P). This
is equivalent to solving a regularized-least squares problem that at-
tempts to fit the data while also minimizing small gradients. We
tried this (using conjugate gradient search) but found that the algo-
rithm failed. One interpretation is that the MAP objective function
attempts to minimize all gradients (even large ones), whereas we
expect natural images to have some large gradients. Consequently,
the algorithm yields a two-tone image, since virtually all the gradi-
ents are zero. If we reduce the noise variance (thus increasing the
weight on the data-fitting term), then the algorithm yields a delta-
function for K, which exactly fits the blurred image, but without
any deblurring. Additionally, we find the MAP objective function
to be very susceptible to poor local minima.

Instead, our approach is to approximate the full posterior distri-
bution p(K,∇Lp|∇P), and then compute the kernel K with max-
imum marginal probability. This method selects a kernel that is
most likely with respect to the distribution of possible latent im-
ages, thus avoiding the overfitting that can occur when selecting a
single “best” estimate of the image.

In order to compute this approximation efficiently, we adopt a
variational Bayesian approach [Jordan et al. 1999] which com-
putes a distribution q(K,∇Lp) that approximates the posterior
p(K,∇Lp|∇P). In particular, our approach is based on Miskin and
MacKay’s algorithm [2000] for blind deconvolution of cartoon im-
ages. A factored representation is used: q(K,∇Lp) = q(K)q(∇Lp).
For the latent image gradients, this approximation is a Gaussian
density, while for the non-negative blur kernel elements, it is a rec-
tified Gaussian. The distributions for each latent gradient and blur
kernel element are represented by their mean and variance, stored
in an array.

Following Miskin and MacKay [2000], we also treat the noise vari-
ance σ 2 as an unknown during the estimation process, thus freeing
the user from tuning this parameter. This allows the noise variance
to vary during estimation: the data-fitting constraint is loose early
in the process, becoming tighter as better, low-noise solutions are
found. We place a prior on σ 2, in the form of a Gamma distribution
on the inverse variance, having hyper-parameters a,b: p(σ 2|a,b) =
Γ(σ−2|a,b). The variational posterior of σ 2 is q(σ−2), another
Gamma distribution.

The variational algorithm minimizes a cost function representing
the distance between the approximating distribution and the true
posterior, measured as: KL(q(K,∇Lp,σ−2)||p(K,∇Lp|∇P)). The
independence assumptions in the variational posterior allows the
cost function CKL to be factored:

<log
q(∇Lp)

p(∇Lp)
>q(∇Lp) + <log

q(K)

p(K)
>q(K) + <log

q(σ−2)

p(σ2)
>q(σ−2)

(4)
where <·>q(θ) denotes the expectation with respect to q(θ)2. For
brevity, the dependence on ∇P is omitted from this equation.

The cost function is then minimized as follows. The means of the
distributions q(K) and q(∇Lp) are set to the initial values of K and
∇Lp and the variance of the distributions set high, reflecting the
lack of certainty in the initial estimate. The parameters of the dis-
tributions are then updated alternately by coordinate descent; one
is updated by marginalizing out over the other whilst incorporat-
ing the model priors. Updates are performed by computing closed-
form optimal parameter updates, and performing line-search in the
direction of these updated values (see Appendix A for details). The
updates are repeated until the change in CKL becomes negligible.
The mean of the marginal distribution <K>q(K) is then taken as
the final value for K. Our implementation adapts the source code
provided online by Miskin and MacKay [2000a].

In the formulation outlined above, we have neglected the possibil-
ity of saturated pixels in the image, an awkward non-linearity which
violates our model. Since dealing with them explicitly is compli-
cated, we prefer to simply mask out saturated regions of the image
during the inference procedure, so that no use is made of them.

For the variational framework, C = D = 4 components were used in
the priors on K and ∇Lp. The parameters of the prior on the latent
image gradients πc,vc were estimated from a single street scene
image, shown in Figure 2, using EM. Since the image statistics vary
across scale, each scale level had its own set of prior parameters.
This prior was used for all experiments. The parameters for the
prior on the blur kernel elements were estimated from a small set of
low-noise kernels inferred from real images.

4.1.1 Multi-scale approach

The algorithm described in the previous section is subject to local
minima, particularly for large blur kernels. Hence, we perform es-
timation by varying image resolution in a coarse-to-fine manner. At
the coarsest level, K is a 3×3 kernel. To ensure a correct start to the
algorithm, we manually specify the initial 3× 3 blur kernel to one
of two simple patterns (see Section 4.1.2). The initial estimate for
the latent gradient image is then produced by running the inference
scheme, while holding K fixed.

We then work back up the pyramid running the inference at each
level; the converged values of K and ∇Lp being upsampled to act
as an initialization for inference at the next scale up. At the finest
scale, the inference converges to the full resolution kernel K.

2 For example, <σ−2>q(σ−2)=
∫

σ−2 σ−2Γ(σ−2|a,b) = b/a.
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above assumptions are violated; however, they may be acceptable to
consumers in some cases, and a professional designer could touch-
up the results. In contrast, the original images are typically unus-
able, beyond touching-up — in effect our method can help “rescue”
shots that would have otherwise been completely lost.

2 Related Work

The task of deblurring an image is image deconvolution; if the blur
kernel is not known, then the problem is said to be “blind”. For
a survey on the extensive literature in this area, see [Kundur and
Hatzinakos 1996]. Existing blind deconvolution methods typically
assume that the blur kernel has a simple parametric form, such as
a Gaussian or low-frequency Fourier components. However, as il-
lustrated by our examples, the blur kernels induced during camera
shake do not have simple forms, and often contain very sharp edges.
Similar low-frequency assumptions are typically made for the input
image, e.g., applying a quadratic regularization. Such assumptions
can prevent high frequencies (such as edges) from appearing in the
reconstruction. Caron et al. [2002] assume a power-law distribution
on the image frequencies; power-laws are a simple form of natural
image statistics that do not preserve local structure. Some methods
[Jalobeanu et al. 2002; Neelamani et al. 2004] combine power-laws
with wavelet domain constraints but do not work for the complex
blur kernels in our examples.

Deconvolution methods have been developed for astronomical im-
ages [Gull 1998; Richardson 1972; Tsumuraya et al. 1994; Zarowin
1994], which have statistics quite different from the natural scenes
we address in this paper. Performing blind deconvolution in this do-
main is usually straightforward, as the blurry image of an isolated
star reveals the point-spread-function.

Another approach is to assume that there are multiple images avail-
able of the same scene [Bascle et al. 1996; Rav-Acha and Peleg
2005]. Hardware approaches include: optically stabilized lenses
[Canon Inc. 2006], specially designed CMOS sensors [Liu and
Gamal 2001], and hybrid imaging systems [Ben-Ezra and Nayar
2004]. Since we would like our method to work with existing cam-
eras and imagery and to work for as many situations as possible, we
do not assume that any such hardware or extra imagery is available.

Recent work in computer vision has shown the usefulness of heavy-
tailed natural image priors in a variety of applications, including
denoising [Roth and Black 2005], superresolution [Tappen et al.
2003], intrinsic images [Weiss 2001], video matting [Apostoloff
and Fitzgibbon 2005], inpainting [Levin et al. 2003], and separating
reflections [Levin and Weiss 2004]. Each of these methods is effec-
tively “non-blind”, in that the image formation process (e.g., the
blur kernel in superresolution) is assumed to be known in advance.

Miskin and MacKay [2000] perform blind deconvolution on line art
images using a prior on raw pixel intensities. Results are shown for
small amounts of synthesized image blur. We apply a similar varia-
tional scheme for natural images using image gradients in place of
intensities and augment the algorithm to achieve results for photo-
graphic images with significant blur.

3 Image model

Our algorithm takes as input a blurred input image B, which is as-
sumed to have been generated by convolution of a blur kernel K
with a latent image L plus noise:

B = K⊗L+N (1)

where ⊗ denotes discrete image convolution (with non-periodic
boundary conditions), and N denotes sensor noise at each pixel.
We assume that the pixel values of the image are linearly related to
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Figure 2: Left: A natural scene. Right: The distribution of gra-
dient magnitudes within the scene are shown in red. The y-axis
has a logarithmic scale to show the heavy tails of the distribution.
The mixture of Gaussians approximation used in our experiments
is shown in green.

the sensor irradiance. The latent image L represents the image we
would have captured if the camera had remained perfectly still; our
goal is to recover L from B without specific knowledge of K.

In order to estimate the latent image from such limited measure-
ments, it is essential to have some notion of which images are a-
priori more likely. Fortunately, recent research in natural image
statistics have shown that, although images of real-world scenes
vary greatly in their absolute color distributions, they obey heavy-
tailed distributions in their gradients [Field 1994]: the distribution
of gradients has most of its mass on small values but gives sig-
nificantly more probability to large values than a Gaussian distri-
bution. This corresponds to the intuition that images often con-
tain large sections of constant intensity or gentle intensity gradi-
ent interrupted by occasional large changes at edges or occlusion
boundaries. For example, Figure 2 shows a natural image and a
histogram of its gradient magnitudes. The distribution shows that
the image contains primarily small or zero gradients, but a few gra-
dients have large magnitudes. Recent image processing methods
based on heavy-tailed distributions give state-of-the-art results in
image denoising [Roth and Black 2005; Simoncelli 2005] and su-
perresolution [Tappen et al. 2003]. In contrast, methods based on
Gaussian prior distributions (including methods that use quadratic
regularizers) produce overly smooth images.

We represent the distribution over gradient magnitudes with a zero-
mean mixture-of-Gaussians model, as illustrated in Figure 2. This
representation was chosen because it can provide a good approxi-
mation to the empirical distribution, while allowing a tractable es-
timation procedure for our algorithm.

4 Algorithm

There are two main steps to our approach. First, the blur kernel
is estimated from the input image. The estimation process is per-
formed in a coarse-to-fine fashion in order to avoid local minima.
Second, using the estimated kernel, we apply a standard deconvo-
lution algorithm to estimate the latent (unblurred) image.

The user supplies four inputs to the algorithm: the blurred image
B, a rectangular patch within the blurred image, an upper bound
on the size of the blur kernel (in pixels), and an initial guess as to
orientation of the blur kernel (horizontal or vertical). Details of how
to specify these parameters are given in Section 4.1.2.

Additionally, we require input image B to have been converted to
a linear color space before processing. In our experiments, we ap-
plied inverse gamma-correction1 with γ = 2.2. In order to esti-
mate the expected blur kernel, we combine all the color channels
of the original image within the user specified patch to produce a
grayscale blurred patch P.

1Pixel value = (CCD sensor value)1/γ
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Figure 3: The multi-scale inference scheme operating on the foun-
tain image in Figure 1. 1st & 3rd rows: The estimated blur ker-
nel at each scale level. 2nd & 4th rows: Estimated image patch at
each scale. The intensity image was reconstructed from the gradi-
ents used in the inference using Poisson image reconstruction. The
Poisson reconstructions are shown for reference only; the final re-
construction is found using the Richardson-Lucy algorithm with the
final estimated blur kernel.

4.1.2 User supervision

Although it would seem more natural to run the multi-scale in-
ference scheme using the full gradient image ∇L, in practice we
found the algorithm performed better if a smaller patch, rich in
edge structure, was manually selected. The manual selection al-
lows the user to avoid large areas of saturation or uniformity, which
can be disruptive or uninformative to the algorithm. Examples of
user-selected patches are shown in Section 5. Additionally, the al-
gorithm runs much faster on a small patch than on the entire image.

An additional parameter is that of the maximum size of the blur
kernel. The size of the blur encountered in images varies widely,
from a few pixels up to hundreds. Small blurs are hard to resolve
if the algorithm is initialized with a very large kernel. Conversely,
large blurs will be cropped if too small a kernel is used. Hence, for
operation under all conditions, the approximate size of the kernel
is a required input from the user. By examining any blur artifact in
the image, the size of the kernel is easily deduced.

Finally, we also require the user to select between one of two ini-
tial estimates of the blur kernel: a horizontal line or a vertical line.
Although the algorithm can often be initialized in either state and
still produce the correct high resolution kernel, this ensures the al-
gorithm starts searching in the correct direction. The appropriate
initialization is easily determined by looking at any blur kernel ar-
tifact in the image.

4.2 Image Reconstruction

The multi-scale inference procedure outputs an estimate of the blur
kernel K, marginalized over all possible image reconstructions. To
recover the deblurred image given this estimate of the kernel, we
experimented with a variety of non-blind deconvolution methods,
including those of Geman [1992], Neelamani [2004] and van Cit-
tert [Zarowin 1994]. While many of these methods perform well in

synthetic test examples, our real images exhibit a range of non-
linearities not present in synthetic cases, such as non-Gaussian
noise, saturated pixels, residual non-linearities in tonescale and es-
timation errors in the kernel. Disappointingly, when run on our
images, most methods produced unacceptable levels of artifacts.

We also used our variational inference scheme on the gradients of
the whole image ∇B, while holding K fixed. The intensity image
was then formed via Poisson image reconstruction [Weiss 2001].
Aside from being slow, the inability to model the non-linearities
mentioned above resulted in reconstructions no better than other
approaches.

As L typically is large, speed considerations make simple methods
attractive. Consequently, we reconstruct the latent color image L
with the Richardson-Lucy (RL) algorithm [Richardson 1972; Lucy
1974]. While the RL performed comparably to the other methods
evaluated, it has the advantage of taking only a few minutes, even
on large images (other, more complex methods, took hours or days).
RL is a non-blind deconvolution algorithm that iteratively maxi-
mizes the likelihood function of a Poisson statistics image noise
model. One benefit of this over more direct methods is that it gives
only non-negative output values. We use Matlab’s implementation
of the algorithm to estimate L, given K, treating each color chan-
nel independently. We used 10 RL iterations, although for large
blur kernels, more may be needed. Before running RL, we clean
up K by applying a dynamic threshold, based on the maximum in-
tensity value within the kernel, which sets all elements below a cer-
tain value to zero, so reducing the kernel noise. The output of RL
was then gamma-corrected using γ = 2.2 and its intensity histogram
matched to that of B (using Matlab’s histeq function), resulting in
L. See pseudo-code in Appendix A for details.

5 Experiments

We performed an experiment to check that blurry images are mainly
due to camera translation as opposed to other motions, such as
in-plane rotation. To this end, we asked 8 people to photograph
a whiteboard3 which had small black dots placed in each corner
whilst using a shutter speed of 1 second. Figure 4 shows dots ex-
tracted from a random sampling of images taken by different peo-
ple. The dots in each corner reveal the blur kernel local to that
portion of the image. The blur patterns are very similar, showing
that our assumptions of spatially invariant blur with little in plane
rotation are valid.

We apply our algorithm to a number of real images with varying
degrees of blur and saturation. All the photos came from personal
photo collections, with the exception of the fountain and cafe im-
ages which were taken with a high-end DSLR using long exposures
(> 1/2 second). For each we show the blurry image, followed by
the output of our algorithm along with the estimated kernel.

The running time of the algorithm is dependent on the size of the
patch selected by the user. With the minimum practical size of
128× 128 it currently takes 10 minutes in our Matlab implemen-
tation. For a patch of N pixels, the run-time is O(N logN) owing
to our use of FFT’s to perform the convolution operations. Hence
larger patches will still run in a reasonable time. Compiled and
optimized versions of our algorithm could be expected to run con-
siderably faster.

Small blurs. Figures 5 and 6 show two real images degraded by
small blurs that are significantly sharpened by our algorithm. The

3Camera-to-whiteboard distance was ≈ 5m. Lens focal length was
50mm mounted on a 0.6x DSLR sensor.
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Figure 4: Left: The whiteboard test scene with dots in each corner.
Right: Dots from the corners of images taken by different people.
Within each image, the dot trajectories are very similar suggesting
that image blur is well modeled as a spatially invariant convolution.

Figure 5: Top: A scene with a small blur. The patch selected by
the user is indicated by the gray rectangle. Bottom: Output of our
algorithm and the inferred blur kernel. Note the crisp text.

gray rectangles show the patch used to infer the blur kernel, chosen
to have many image details but few saturated pixels. The inferred
kernels are shown in the corner of the deblurred images.

Large blurs. Unlike existing blind deconvolution methods our
algorithm can handle large, complex blurs. Figures 7 and 9 show
our algorithm successfully inferring large blur kernels. Figure 1
shows an image with a complex tri-lobed blur, 30 pixels in size
(shown in Figure 10), being deblurred.

Figure 6: Top: A scene with complex motions. While the motion of
the camera is small, the child is both translating and, in the case of
the arm, rotating. Bottom: Output of our algorithm. The face and
shirt are sharp but the arm remains blurred, its motion not modeled
by our algorithm.

As demonstrated in Figure 8, the true blur kernel is occasionally
revealed in the image by the trajectory of a point light source trans-
formed by the blur. This gives us an opportunity to compare the
inferred blur kernel with the true one. Figure 10 shows four such
image structures, along with the inferred kernels from the respec-
tive images.

We also compared our algorithm against existing blind deconvo-
lution algorithms, running Matlab’s deconvblind routine, which
provides implementations of the methods of Biggs and Andrews
[1997] and Jansson [1997]. Based on the iterative Richardson-Lucy
scheme, these methods also estimate the blur kernel; alternating be-
tween holding the blur constant and updating the image and vice-
versa. The results of this algorithm, applied to the fountain and cafe
scenes are shown in Figure 11 and are poor compared to the output
of our algorithm, shown in Figures 1 and 13.

Images with significant saturation. Figures 12 and 13 con-
tain large areas where the true intensities are not observed, owing
to the dynamic range limitations of the camera. The user-selected
patch used for kernel analysis must avoid the large saturated re-
gions. While the deblurred image does have some artifacts near
saturated regions, the unsaturated regions can still be extracted.
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Figure 4: Left: The whiteboard test scene with dots in each corner.
Right: Dots from the corners of images taken by different people.
Within each image, the dot trajectories are very similar suggesting
that image blur is well modeled as a spatially invariant convolution.

Figure 5: Top: A scene with a small blur. The patch selected by
the user is indicated by the gray rectangle. Bottom: Output of our
algorithm and the inferred blur kernel. Note the crisp text.

gray rectangles show the patch used to infer the blur kernel, chosen
to have many image details but few saturated pixels. The inferred
kernels are shown in the corner of the deblurred images.

Large blurs. Unlike existing blind deconvolution methods our
algorithm can handle large, complex blurs. Figures 7 and 9 show
our algorithm successfully inferring large blur kernels. Figure 1
shows an image with a complex tri-lobed blur, 30 pixels in size
(shown in Figure 10), being deblurred.

Figure 6: Top: A scene with complex motions. While the motion of
the camera is small, the child is both translating and, in the case of
the arm, rotating. Bottom: Output of our algorithm. The face and
shirt are sharp but the arm remains blurred, its motion not modeled
by our algorithm.

As demonstrated in Figure 8, the true blur kernel is occasionally
revealed in the image by the trajectory of a point light source trans-
formed by the blur. This gives us an opportunity to compare the
inferred blur kernel with the true one. Figure 10 shows four such
image structures, along with the inferred kernels from the respec-
tive images.

We also compared our algorithm against existing blind deconvo-
lution algorithms, running Matlab’s deconvblind routine, which
provides implementations of the methods of Biggs and Andrews
[1997] and Jansson [1997]. Based on the iterative Richardson-Lucy
scheme, these methods also estimate the blur kernel; alternating be-
tween holding the blur constant and updating the image and vice-
versa. The results of this algorithm, applied to the fountain and cafe
scenes are shown in Figure 11 and are poor compared to the output
of our algorithm, shown in Figures 1 and 13.

Images with significant saturation. Figures 12 and 13 con-
tain large areas where the true intensities are not observed, owing
to the dynamic range limitations of the camera. The user-selected
patch used for kernel analysis must avoid the large saturated re-
gions. While the deblurred image does have some artifacts near
saturated regions, the unsaturated regions can still be extracted.
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Figure 10: Top row: Inferred blur kernels from four real images (the
cafe, fountain and family scenes plus another image not shown).
Bottom row: Patches extracted from these scenes where the true
kernel has been revealed. In the cafe image, two lights give a dual
image of the kernel. In the fountain scene, a white square is trans-
formed by the blur kernel. The final two images have specularities
transformed by the camera motion, revealing the true kernel.

Figure 11: Baseline experiments, using Matlab’s blind deconvolu-
tion algorithm deconvblind on the fountain image (top) and cafe
image (bottom). The algorithm was initialized with a Gaussian blur
kernel, similar in size to the blur artifacts.

exposures. Additionally, our method could be extended to make
use of more advanced natural image statistics, such as correlations
between color channels, or the fact that camera motion traces a con-
tinuous path (and thus arbitrary kernels are not possible). There is
also room to improve the noise model in the algorithm; our current
approach is based on Gaussian noise in image gradients, which is
not a very good model for image sensor noise.

Although our method requires some manual intervention, we be-
lieve these steps could be eliminated by employing more exhaustive
search procedures, or heuristics to guess the relevant parameters.

Figure 12: Top: A blurred scene with significant saturation. The
long thin region selected by the user has limited saturation. Bottom:
output of our algorithm. Note the double exposure type blur kernel.

Figure 13: Top: A blurred scene with heavy saturation, taken with
a 1 second exposure. Bottom: output of our algorithm.
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above assumptions are violated; however, they may be acceptable to
consumers in some cases, and a professional designer could touch-
up the results. In contrast, the original images are typically unus-
able, beyond touching-up — in effect our method can help “rescue”
shots that would have otherwise been completely lost.

2 Related Work

The task of deblurring an image is image deconvolution; if the blur
kernel is not known, then the problem is said to be “blind”. For
a survey on the extensive literature in this area, see [Kundur and
Hatzinakos 1996]. Existing blind deconvolution methods typically
assume that the blur kernel has a simple parametric form, such as
a Gaussian or low-frequency Fourier components. However, as il-
lustrated by our examples, the blur kernels induced during camera
shake do not have simple forms, and often contain very sharp edges.
Similar low-frequency assumptions are typically made for the input
image, e.g., applying a quadratic regularization. Such assumptions
can prevent high frequencies (such as edges) from appearing in the
reconstruction. Caron et al. [2002] assume a power-law distribution
on the image frequencies; power-laws are a simple form of natural
image statistics that do not preserve local structure. Some methods
[Jalobeanu et al. 2002; Neelamani et al. 2004] combine power-laws
with wavelet domain constraints but do not work for the complex
blur kernels in our examples.

Deconvolution methods have been developed for astronomical im-
ages [Gull 1998; Richardson 1972; Tsumuraya et al. 1994; Zarowin
1994], which have statistics quite different from the natural scenes
we address in this paper. Performing blind deconvolution in this do-
main is usually straightforward, as the blurry image of an isolated
star reveals the point-spread-function.

Another approach is to assume that there are multiple images avail-
able of the same scene [Bascle et al. 1996; Rav-Acha and Peleg
2005]. Hardware approaches include: optically stabilized lenses
[Canon Inc. 2006], specially designed CMOS sensors [Liu and
Gamal 2001], and hybrid imaging systems [Ben-Ezra and Nayar
2004]. Since we would like our method to work with existing cam-
eras and imagery and to work for as many situations as possible, we
do not assume that any such hardware or extra imagery is available.

Recent work in computer vision has shown the usefulness of heavy-
tailed natural image priors in a variety of applications, including
denoising [Roth and Black 2005], superresolution [Tappen et al.
2003], intrinsic images [Weiss 2001], video matting [Apostoloff
and Fitzgibbon 2005], inpainting [Levin et al. 2003], and separating
reflections [Levin and Weiss 2004]. Each of these methods is effec-
tively “non-blind”, in that the image formation process (e.g., the
blur kernel in superresolution) is assumed to be known in advance.

Miskin and MacKay [2000] perform blind deconvolution on line art
images using a prior on raw pixel intensities. Results are shown for
small amounts of synthesized image blur. We apply a similar varia-
tional scheme for natural images using image gradients in place of
intensities and augment the algorithm to achieve results for photo-
graphic images with significant blur.

3 Image model

Our algorithm takes as input a blurred input image B, which is as-
sumed to have been generated by convolution of a blur kernel K
with a latent image L plus noise:

B = K⊗L+N (1)

where ⊗ denotes discrete image convolution (with non-periodic
boundary conditions), and N denotes sensor noise at each pixel.
We assume that the pixel values of the image are linearly related to
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Figure 2: Left: A natural scene. Right: The distribution of gra-
dient magnitudes within the scene are shown in red. The y-axis
has a logarithmic scale to show the heavy tails of the distribution.
The mixture of Gaussians approximation used in our experiments
is shown in green.

the sensor irradiance. The latent image L represents the image we
would have captured if the camera had remained perfectly still; our
goal is to recover L from B without specific knowledge of K.

In order to estimate the latent image from such limited measure-
ments, it is essential to have some notion of which images are a-
priori more likely. Fortunately, recent research in natural image
statistics have shown that, although images of real-world scenes
vary greatly in their absolute color distributions, they obey heavy-
tailed distributions in their gradients [Field 1994]: the distribution
of gradients has most of its mass on small values but gives sig-
nificantly more probability to large values than a Gaussian distri-
bution. This corresponds to the intuition that images often con-
tain large sections of constant intensity or gentle intensity gradi-
ent interrupted by occasional large changes at edges or occlusion
boundaries. For example, Figure 2 shows a natural image and a
histogram of its gradient magnitudes. The distribution shows that
the image contains primarily small or zero gradients, but a few gra-
dients have large magnitudes. Recent image processing methods
based on heavy-tailed distributions give state-of-the-art results in
image denoising [Roth and Black 2005; Simoncelli 2005] and su-
perresolution [Tappen et al. 2003]. In contrast, methods based on
Gaussian prior distributions (including methods that use quadratic
regularizers) produce overly smooth images.

We represent the distribution over gradient magnitudes with a zero-
mean mixture-of-Gaussians model, as illustrated in Figure 2. This
representation was chosen because it can provide a good approxi-
mation to the empirical distribution, while allowing a tractable es-
timation procedure for our algorithm.

4 Algorithm

There are two main steps to our approach. First, the blur kernel
is estimated from the input image. The estimation process is per-
formed in a coarse-to-fine fashion in order to avoid local minima.
Second, using the estimated kernel, we apply a standard deconvo-
lution algorithm to estimate the latent (unblurred) image.

The user supplies four inputs to the algorithm: the blurred image
B, a rectangular patch within the blurred image, an upper bound
on the size of the blur kernel (in pixels), and an initial guess as to
orientation of the blur kernel (horizontal or vertical). Details of how
to specify these parameters are given in Section 4.1.2.

Additionally, we require input image B to have been converted to
a linear color space before processing. In our experiments, we ap-
plied inverse gamma-correction1 with γ = 2.2. In order to esti-
mate the expected blur kernel, we combine all the color channels
of the original image within the user specified patch to produce a
grayscale blurred patch P.

1Pixel value = (CCD sensor value)1/γ
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(converge)
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Time: about 30 seconds for an 800x600 image

Iteration 8 
(converge)
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A comparison

RL deconvolution
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A comparison

Our deconvolution
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Two-step iterative optimization
• Optimize L
• Optimize f

A form of L1-norm regularized problem and 
is solved using an interior point method
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Iteration 0
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Iteration 1
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Iteration 6
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Iteration 10
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Iteration 1



[S
lid

es
 b

y 
Q

i S
ha

n]

45

Iteration 2
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Iteration 4
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Iteration 6
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Iteration 8
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Convergence

  Time: about 350 seconds for an 800x600 image
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Results
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Results



[S
lid

es
 b

y 
Q

i S
ha

n]

52

Results
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Results



[S
lid

es
 b

y 
Q

i S
ha

n]

54



[S
lid

es
 b

y 
Q

i S
ha

n]

55



[S
lid

es
 b

y 
Q

i S
ha

n]

56

More results
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More results
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More results
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More results



[S
lid

es
 b

y 
Q

i S
ha

n]

60

More results
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More results
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More results
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More results
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Blurred
image
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System Overview

Compute 
Camera 

Drift 
Correction

Blurry Image

Sensor Data

Deblur 
Image

Deblurred Image

GyrosArduino Board

3-axis AccelerometerBluetooth Radio

SLR Trigger
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Camera and Blur

R

T

R

T

Time
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Recovering Motion from Inertial Sensors

Measured by accelerometers and gyros

Integrate to Recover Camera Rotation/Translation
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Spatially Varying Deblurring

Deblurred Using Correct 
Kernel

Deblurred Using Center Kernel

Blurry Spatially-Varying Kernels
(Single Depth Plane)
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Drift Correction

 Assume drift is linear
 Solve for x,y endpoint (u,v) (and planar depth) using 

sensors as a constraint and maximize image prior

 Nelder-Mead Simplex Optimization
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Large blur kernels (>20 pixels)

Our Output
(after drift 
correction)

Using Groundtruth 
Motion

Blurry Image Using PSFs from
the raw sensor 

values
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Large blur kernels (>20 pixels)

Shan et al. Fergus et al.Blurry Image Our Output
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Results: BlurryResults: Deblurred
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Results: BlurryResults: Deblurred
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Results: BlurryResults: Deblurred
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Comparison to Spatially Invariant Deblurring

Our Output Shan et al. Fergus et al.



Neel Joshi, SIGGRAPH 2010
76

Results: BlurryResults: Deblurred
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