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Approaches to shake deblurring

- Measure shake vs. fully blind approach

- Estimate kernel and deconvolve vs. full-image estimation

* In this lecture:
BenEzra & Nayar 2004: measured, direct deconvolve
Fergus et al. 20006: blind kernel estimation
Shan et al. 2008: blind, full-image estimation
Joshi et al. 2010: measured, semi-blind kernel estimation

Cornell CS6640 Fall 2012



Ben-Ezra & Nayar
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Indoor Scene: Face (Focal length = 593mm, Exposure time = 0.5 sec.)
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Fig. 10. Experimental results for indoor face scene. (a) Input images, including the motion blurred image from the primary detector and a sequence of
low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution. (c) The
deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.
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Indoor Scene: 3D Objects (Focal length = 604mm, Exposure time = (.5 sec.)
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Fig. 9. Experimental results for indoor 3D objects scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution.
(c) The deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.
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Outdoor Scene: Building (Focal length = 633mm, Exposure time = 1.0 sec.)
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Fig. 11. Experimental results for outdoor building scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its paths and its energy distribution.
(c) The deblurring result. Notice the clarity of the text. (d) Ground truth image that were captured without motion blur using a tripod.
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Outdoor Night Scene: Tower (Focal length = 884mm, Exposure time = 4.0 secs.)
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Fig. 12. Experimental results for outdoor tower scene. (a) Input images, including the motion blurred image from the primary detector and a
sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution.
(c) The deblurring result. (d) Ground truth image that was captured without motion blur using a tripod.
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Fergus et al.
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Argument for spatial invariace
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Figure 4: Left: The whiteboard test scene with dots in each corner.
Right: Dots from the corners of images taken by different people.
Within each image, the dot trajectories are very similar suggesting
that image blur is well modeled as a spatially invariant convolution.
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Bayesian estimate of kernel
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Prior on image gradients
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oHeavy-tailed distribution on image gradients

—— Mixture of Gaussians fit
—— Empirical distribution
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Figure 2: Left: A natural scene. Right: The distribution of gra-
dient magnitudes within the scene are shown in red. The y-axis
has a logarithmic scale to show the heavy tails of the distribution.
The mixture of Gaussians approximation used in our experiments
1s shown in green.
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Estimation results
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Shan et al.
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Logarithmic desity of
image gradients
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Image Local Constraint
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Image Local Constraint
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Kernel Statistics

exponentially distributed
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Two-step iterative optimization
* Optimize L
* Optimize f

min £(L, /') = minlog| p(n) p,(VL) p,(L) p( /)]

E(f)=(2wv* VL@ -V IE|+I1/ 1]

A form of L1-norm regularized problem and
IS solved using an interior point method
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lteration 1
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lteration 6
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More results
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More results
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More results
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Joshi et al.
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System Overview
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Camera and Blur
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Recovering Motion from Inertial Sensors
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Spatially Varying Deblurring
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How accurate are the sensors
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Drift Correction
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. . . time (sec)
= Assume drift is linear

= Solve for x,y endpoint (u,v) (and planar depth) using
sensors as a constraint and maximize image prior
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Large blur kernels (>20 pixels)
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Large blur kernels (>20 pixels)

Blurry Image Our Output Shan et al. Fergus et al.
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Results: Deblurred
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Results: Deblurred
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Comparison to Spatially Invariant Deblurring
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Results: Deblurred
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