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Final projects

 Flexible group size

- This weekend: group yourselves and send me:

a one-paragraph description of your idea if you are fixed on one
one-sentence descriptions of 3 ideas if you are looking for one

* Next week: project proposal
one-page description
plan for mid-project milestone

- Before thanksgiving: milestone report

- December 5 (day of scheduled final exam): final presentations
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Compositing
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Foreground and background

* How we compute new image varies with position

use background

use foreground

[Chuang et al./ Corel]
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* Therefore, need to store some kind of tag to say what
parts of the image are of interest
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Binary image mask

* First idea: store one bit per pixel

—answers question “is this pixel part of the foreground?”

[Chuang et al./ Corel]
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— causes jaggies similar to point-sampled rasterization

4 \ ‘*"
—same problem, same solution: intermediate values
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Partial pixel coverage

* The problem: pixels near boundary are not strictly
foreground or background
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—how to represent this simply?
—interpolate boundary pixels between the fg. and bg. colors
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Alpha compositing

* Formalized in 1984 by Porter & Duff
 Store fraction of pixel covered, called o

C =Aover B
A covers_|
area o rC =QATA T+ (1 — @A)TB
—[Bshows  go =aaga+(1—aa)gB
through
area (1-0) bo =oaba + ( — OfA)bB

—this exactly like a spatially varying crossfade

* Convenient implementation
—8 more bits makes 32
—2 multiplies + | add per pixel for compositing
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Alpha compositing—example

[Chuang et al./ Corel]
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Creating alpha mattes

- Compositing is ubiquitous in film production
merge separately shot live action

merge visual effects with live action
merge visual effects from different studios/renderers

 Also useful in photography, graphic design

composite photos [wired cover]
photos as non-rectangular design elements [newsweek cover]

- The alpha channel can be called a “matte”

(dates from matte paintings, painted on glass to allow backgrounds
to show through when photographed)

- Getting a matte for a photographic source is tricky

and getting it right is crucial to good results
leads to hours and hours of manual pixel-tweaking
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Matting

« Someone has computed C = F over B and lost F and B, and we
are supposed to recover F (including a) and B.
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When you can arrange it, it’s much easier if B is some very unlikely color...
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Strategy

- Simple approaches used for analog and early digital chroma-
key devices

a=1— Clamp(a1 (Cb — CLQCg)) <«— for a blue background (bluescreen)
and other more complicated schemes

* More principled approach: Bayesian matting

based on statistical models for colors of F and B
compute per-pixel statistical estimate of each pixel's F and a

[9661 uullg ¥ YHWS] wou} ejnw.io-
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Trimap

- Someone has to specify which part is supposed to be extracted

- Trimap: label pixels as definitely F, definitely B, or not sure

Background

Unknown

Foreground

[L00Z ‘e 10 Bueny))]
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Estimating the matte

refresher

joint distribution: p(a, b
marginal distribution (projection

plying the pattern of
AP estimation:

conditional distribution
Bayes: p(alb)p(b) = p(a)p(bla)p(a

slice): p(alb

pla) = J, pla,b
b

|
=
s

p(F,B,a|C) =p(C|F,B,a)p(F,B,«a

what we have
a model for
probability

what we want
to maximize
likelihood

ayesian matting:

gaussian noise model for probability of C

F, B, a assumed independent
multivariate gaussians for f B
a assumed uniform
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Abstract

This paper proposes a new Bayesian framework for solving
the matting problem, i.e. extracting a foreground element from
a background image by estimating an opacity for each pixel
of the foreground element. Our approach models both the
foreground and background color distributions with spatially-
varying sets of Gaussians, and assumes a fractional blending
of the foreground and background colors to produce the final
output. It then uses a maximum-likelihood criterion to esti-
mate the optimal opacity, foreground and background simul-
taneously. In addition to providing a principled approach to
the matting problem, our algorithm effectively handles objects
with intricate boundaries, such as hair strands and fur, and
provides an improvement over existing techniques for these
difficult cases.

1. Introduction

In digital matting, a foreground element is extracted from a
background image by estimating a color and opacity for the
foreground element at each pixel. The opacity value at each
pixel is typically called its alpha, and the opacity image, taken
as a whole, is referred to as the alpha matte or key. Fractional
opacities (between 0 and 1) are important for transparency
and motion blurring of the foreground element, as well as for
partial coverage of a background pixel around the foreground
object’s boundary.

edu/projects/digits

atting/

Other approaches attempt to pull mattes from natural (arbi-
trary) backgrounds, using statistics of known regions of fore-
ground or background in order to estimate the foreground and
background colors along the boundary. Once these colors are
known, the opacity value is uniquely determined.

In this paper, we survey the most successful previous ap-
proaches to digital matting—all of them fairly ad hoc—and
demonstrate cases in which each of them fails. We then in-
troduce a new, more principled approach to matting, based
on a Bayesian framework. While no algorithm can give per-
fect results in all cases (given that the problem is inherently
underconstrained), our Bayesian approach appears to give im-
proved results in each of these cases.

2. Background

As already mentioned, matting and compositing were origi-
nally developed for film and video production. In 1984, Porter
and Duff [8] introduced the digital analog of the matte—the
alpha channel—and showed how synthetic images with alpha
could be useful in creating complex digital images. The most
common compositing operation is the over operation, which
is summarized by the compositing equation:

C=aF+(1-a)B, o)

where C, F, and B are the pixel’s composite, foreground,
and background colors, respectively, and « is the pixel’s opac-

Matting is used in order to composite the g i ele-
ment into a new scene. Matting and compositing were origi-
nally developed for film and video production [4], where they
have proven invaluable. Nevertheless, “pulling a matte” is
still somewhat of a black art, especially for certain notoriously
difficult cases such as thin whisps of fur or hair. The prob-
lem is difficult because it is inherently underconstrained: for a
foreground element over a single background image there are
in general an infinite number of interpretations for the fore-
ground’s color versus opacity.

In practice, it is still possible to pull a satisfactory matte in
many cases. One common approach is to use a background
image of known color (typically blue or green) and make cer-
tain assumptions about the colors in the foreground (such as
the relative proportions of red, green, and blue at each pixel);
these assumptions can then be tuned by a human operator.

ity used to linearly blend between foreground and
background.

The matting process starts from a photograph or set of pho-
tographs (essentially composite images) and attempts to ex-
tract the foreground and alpha images. Matting techniques
differ primarily in the number of images and in what a pri-
ori assumptions they make about the foreground, background,
and alpha.

Blue screen matting was among the first techniques used
for live action matting. The principle is to photograph the sub-
ject against a constant-colored background, and extract fore-
ground and alpha treating each frame in isolation. This sin-
gle image approach is underconstrained since, at each pixel,
we have three observations and four unknowns. Vlahos pi-
oneered the notion of adding simple constraints to make the
problem tractable; this work is nicely summarized by Smith

[Chuang et al. 2001]
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Bayesian matting math

"

refresher

joint distribution: p(a,b)

marginal distribution (projection): p(a)
conditional distribution (slice): p(a|b) =
Bayes: p(alb)p(b) = p(bla)p(a)

p(F,B,a) = kN(F — F,Sg)N(B — B,Xp)

!

! \

prob. of a multivariate covariance
normal dist. matrix

p(C|F,B,a) = N(C — |aF + (1 —«a)B|,0¢)

!

multivariate
isotropic normal dist.

2logp(F,B,a|C) =[C — B —a(F — B)|)*/oc +(F - F)'Yp(F-F)+(B—-B)'Ss(B-B

! !

what to maximize bilinear in a and (F,B)

variance
(of image noise)

uses a procedure of alternating linear
system solves
for a and for (F,B)
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Defining priors for Fand B

- Use the weighted covariance of a region of the image around

the pixel being solved

_ _ Background
(Br)ig = ) we(Fri — Fi)(Fry — Fy) [ ) wn
/ N k
color 1 depends on
cha}nnelg nearby distance and
i and j pixels k known a

- Solve the problem by marching inward from

the edges of the “unknown” area ¢y
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Bayesian matting results

Input
[L00Z ‘e 10 Bueny))]

Segmentation

Composite

Figure 2 Summary of input images and results. Input images (top row): a blue-screen matting example of a toy lion, a synthetic
‘hatural image” of the same lion (for which the exact solution is known), and two real natural images, (a lighthouse and a woman). Input
segmentation (middle row): conservative foreground (white), conservative background (black), and ‘unknown” (grey). The leftmost

segmentation was computed automatically (see text), while the rightmost three were specifi ed by hand. Compositing results (bottom row):

the results of compositing the foreground images and mattes extracted through our Bayesian matting algorithm over new background
scenes. (Lighthouse image and the background images in composite courtesy Philip Greenspun, http://philip.greenspun.com. Woman
image was obtained from Corel Knockout’s tutorial, Copyright (¢) 2001 Corel. All rights reserved.)
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Bayesian matting results

[1L00Z ‘e 10 Bueny))]

Bayesian approach Mishima’s method

Ground truth

Alpha Matte Composite

Figure 3 Blue-screen matting of lion (taken from leftmost column of Figure 2). Mishima’s results in the top row suffer from ‘blue spill.”
The middle and bottom rows show the Bayesian result and ground truth, respectively.

Cornell CS6640 Fall 2012
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Bayesian matting results

Knockout

Ruzon and Tomasi

Bayesian approach

Alpha Matte | Composite Inset Alpha Matte Composite

Figure 5 Natural image matting. These two sets of photographs correspond to the rightmost two columns of Figure 2, and the insets
show both a close-up of the alpha matte and the composite image. For the woman’s hair, Knockout loses strands in the inset, whereas
Ruzon-Tomasi exhibits broken strands on the left and a diagonal color discontinuity on the right, which is enlarged in the inset. Both
Knockout and Ruzon-Tomasi suffer from background spill as seen in the lighthouse inset, with Knockout practically losing the railing.
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[Chuang et al. 2001 website]
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Closed form matting
(blackboard)
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Previous approaches

oL =
o <[0,1]
oL = ¥ The trimap interface:
‘Bayesian Matting (Chuang et al, CVPRO01)
‘Poisson Matting (Sun et al SIGGRAPH 04)
‘Random Walk (Grady et al 05)
a =0
oL =

| &
Py AN

o~ o1 Scribbles interface:
‘Wang&Cohen ICCV05
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Problems with trimap based approaches

‘Iterate between solving for F,B and solving for (x

Accurate trimap required

Input Scribbles Bayesian matting from Good matting from
scribbles scribbles

(Replotted from Wang&Cohen)



Closed-form matting results
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Effect of €
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Profile of the different mattes

-ig. 6. Computing a matte using different ¢ values.
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Closed-form matting results

Bayesian

Cornell CS6640 Fall 2012

Closed-form
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Closed-form matting results

Bayesian Poisson
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Closed-form
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