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• Bilateral filtering
another way to think about large and small scale detail

• HDR tone mapping techniques
a case study in applying many different notions of “large” and “small”
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Denoising from 1 image
• We can’t take average 

over multiple images
Noisy input



slide by Frédo D
urand, M

IT

Denoising from 1 image
• We can’t take average 

over multiple images
• Idea 1: take a spatial 

average
- Most pixels have roughly teh 

same color as their neighbor
- Noise looks high frequency => 

do a low pass
• Here: Gaussian blur

Noisy input
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Gaussian blur
• Noise is mostly gone
• But image is blurry

- duh!

After Gaussian blur
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Gaussian blur
• Noise is mostly gone
• But image is blurry

- duh!

• Question: how to blur/
smooth/abstract image, 
but without destroying 
important features?

After Gaussian blur

adapted from
 slide by Frédo D

urand, M
IT
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Anisotropic diffusion
• A diffusion equation will evolve an image to become smoother

• Make conductance variable to smooth some features less

• Calculate “edginess” from current image

• Result: positive reinforcement of edges, producing shocks

7

It(x, y) = �C (r2
I)(x, y)

“heat conductance”

It(x, y) = �C(x, y) (r2
I)(x, y)

conductance inversely 
related to “edginess”

It(x, y) = �C(x, y, t) (r2
I)(x, y)
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• Smoothing with different weights in “edginess” calculation 
leads to progressive abstraction—a scale space

Anisotropic Diffusion

8
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Fig. 9. Effect of anisotropic ditfusion (b )  on the Canaletto image ( a )  [3] .  Notice that the edges remain sharp until their disappearance 

and K was set equal to the 90% value of its integral at 
every iteration (see Fig. 12(b)). 

The computational scheme described in this section has 
been chosen for its simplicity. Other numerical solutions 
of the diffusion equation, and multiscale algorithms may 
be considered for efficient software implementations. 

VI. COMPARISON TO OTHER EDGE DETECTION SCHEMES 
This section is devoted to comparing the anisotropic dif- 

fusion scheme that we present in this paper with previous 
work on edge detection, image segmentation, and image 
restoration. 

We will divide edge detectors in two classes: fixed- 
neighborhood edge detectors, and energyiprobability 
"global" schemes. 

(a) (b)  (C) (4 
Fig. 12.  From left to right (a) original image, (b) scale-space using an- 

isotropic diffusion (10. 20. 80 iterations), (c) edges of the same. (d) 
edges at comparable scales detected using the Canny detector (convo- 
lution kernels of variance 1. 2.  4 pixels). 
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Bilateral filter
• [Tomasi and Manduci 1998]

– http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf 
• Developed for denoising
• Related to 

–SUSAN filter [Smith and Brady 95] 
http://citeseer.ist.psu.edu/smith95susan.html

–Digital-TV [Chan, Osher and Chen 2001]
http://citeseer.ist.psu.edu/chan01digital.html 

–sigma filter http://www.geogr.ku.dk/CHIPS/Manual/f187.htm 
• Full survey: http://people.csail.mit.edu/sparis/publi/2009/

fntcgv/Paris_09_Bilateral_filtering.pdf 

http://www.geogr.ku.dk/CHIPS/Manual/f187.htm
http://www.geogr.ku.dk/CHIPS/Manual/f187.htm
http://citeseer.ist.psu.edu/chan01digital.html
http://citeseer.ist.psu.edu/chan01digital.html
http://people.csail.mit.edu/sparis/
http://people.csail.mit.edu/sparis/
http://www.cis.rit.edu/fairchild/PDFs/PRO22.pdf
http://www.cis.rit.edu/fairchild/PDFs/PRO22.pdf
http://people.csail.mit.edu/sparis/publi/2009/fntcgv/Paris_09_Bilateral_filtering.pdf
http://people.csail.mit.edu/sparis/publi/2009/fntcgv/Paris_09_Bilateral_filtering.pdf
http://people.csail.mit.edu/sparis/publi/2009/fntcgv/Paris_09_Bilateral_filtering.pdf
http://people.csail.mit.edu/sparis/publi/2009/fntcgv/Paris_09_Bilateral_filtering.pdf
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Start with Gaussian filtering
• Here, input is a step function + noise

output input
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Gaussian filter as weighted average
• Weight of  ξ  depends on distance to x

output input
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The problem of edges
• Here,          “pollutes” our estimate J(x)
• It is too different 

output input
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Principle of Bilateral filtering
[Tomasi and Manduchi 1998]

• Penalty g on the intensity difference

output input
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Bilateral filtering
[Tomasi and Manduchi 1998]

• Spatial Gaussian f

output input
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Bilateral filtering
[Tomasi and Manduchi 1998]

• Spatial Gaussian f
• Gaussian g on the intensity difference

output input
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Normalization factor
[Tomasi and Manduchi 1998]

• k(x)=

output input
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Bilateral filtering is non-linear
[Tomasi and Manduchi 1998]

• The weights are different for each output pixel

output input



Cornell CS6640 Fall 2012

Effects of bilateral filter

18
Figure 3: A detail from figure 5 (a) processed with bilateral filters with various range and domain parameter values.

(a) (b)

(c) (d)

Figure 4: A picture before (a) and after (b) bilateral filtering. (c,d) are details from (a,b).

size of dom
ain filter

size of range filter

[Tom
asi & M

anduchi 1998]
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Bilateral filter

Noisy input After gaussian blur

adapted from
 slide by Frédo D

urand, M
IT
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Bilateral filter

Noisy input After bilateral filter
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Can we do better?

Noisy input After bilateral filter

chroma 
noise
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Chroma noise
• Our visual system has different spatial 

frequency response to chrominance vs. 
luminance

• Perform Biateral filtering in YUV
• Bigger spatial filter in U & V
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Normal RGB Bilateral filter

Noisy input After bilateral filter
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YUV bilateral filter

Noisy input After YUV bilateral filter
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Comparison

Noisy input Bilateral filter YUV bilateral filter
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Bilateral filtering
• Also used to remove skin blemishes in portraits

- Surface blur in photoshop
- Although box spatial kernel instead of Gaussian

• Useful for lots of other things
- In particular, tone mapping for contrast reduction and 

high-dynamic-range imaging
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Photoshop surface blur
• Note the radius and threshold controls 

- same as sigma_domain and sigma_range
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HDR tone mapping
• Problem: measured dynamic range does not fit into displayable 

dynamic range
• Goal: compress range of image without producing low contrast

• Approach: divide into detail and large-scale, compress only 
large-scale

question: how to differentiate “detail” from “large scale”
answer has gotten more nuanced over time

28



Dynamic range
• In the highlights, we are limited by clipping
• In the shadows, we are limited by noise

Brightened 
many times



Examples
• Inside is too dark
• Outside is too bright

• Sun overexposed
• Foreground too dark
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Dean S. Pemberton
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http://flickr.com/photos/57552634@N00
http://flickr.com/photos/57552634@N00
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 Alexandre Buisse

http://flickr.com/photos/57552634@N00
http://flickr.com/photos/57552634@N00


Cornell CS6640 Fall 2012 34
 Alexandre Buisse

http://flickr.com/photos/57552634@N00
http://flickr.com/photos/57552634@N00
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Pointwise transforms
• Tumblin & Rushmeier 1993

• Ward et al. 1997

35
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Ward et al. 1997
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4.2.1 Cumulative Distribution
The cumulative frequency distribution is defined as:
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= Â ( )

(i.e., the total number of samples).
Later on, we will also need the derivative of this func-

tion. Since the cumulative distribution is a numerical inte-
gration of the histogram, the derivative is simply the histo-
gram with an appropriate normalization factor. In our
method, we approximate a continuous distribution and
derivative by interpolating adjacent values linearly. The
derivative of our function is:

dP b
db

f b
T b

( ) ( )
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where
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wmax wmin=

-log( ) log( )

(i.e., the size of each bin).

4.3 Naive Histogram Equalization
If we wanted all the brightness values to have equal prob-
ability in our final displayed image, we could now perform a
straightforward histogram equalization. Although this is not
our goal, it is a good starting point for us. Based on the cu-
mulative frequency distribution just described, the equaliza-
tion formula can be stated in terms of brightness as follows:

B L L L P Bde dmin dmax dmin w= + - ◊log( ) log( ) log( ) ( )      (4)

The problem with naive histogram equalization is that it
not only compresses dynamic range (contrast) in regions
where there are few samples, it also expands contrast in
highly populated regions of the histogram. The net effect is
to exaggerate contrast in large areas of the displayed image.
Take, as an example, the scene shown in Fig. 8, with lumi-
nances computed using Radiance. Although we cannot see
the region surrounding the lamps due to the clamped linear
tone-mapping operator, the image appears to us as more or
less normal. Applying the naive histogram equalization,
Fig. 9 is produced. The tiles in the shower now have a mot-
tled appearance. Because this region of world luminance val-
ues is so well represented, naive histogram equalization
spreads it out over a relatively larger portion of the display’s
dynamic range, generating superlinear contrast in this region.

4.4 Histogram Adjustment With a Linear Ceiling
If the contrast being produced is too high, then what is an
appropriate contrast for representing image features? The
crude answer is that the contrast in any given region should
not exceed that produced by a linear tone-mapping opera-
tor, since linear operators produce satisfactory results for
scenes with limited dynamic range. We will take this sim-
ple approach first, and later refine our answer based on
human contrast sensitivity.

A linear ceiling on the contrast produced by our tone-
mapping operator can be written thus:

Fig. 8. Rendering of a bathroom model mapped with a linear operator.

Fig. 9. Naive histogram equalization allows us to see the area around
the light sources, but contrast is exaggerated in other areas, such as
the shower tiles.

Authorized licensed use limited to: Yale University. Downloaded on July 28, 2009 at 14:21 from IEEE Xplore.  Restrictions apply. 
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Authorized licensed use limited to: Yale University. Downloaded on July 28, 2009 at 14:21 from IEEE Xplore.  Restrictions apply. 

LARSON ET AL.:  A VISIBILITY MATCHING TONE REPRODUCTION OPERATOR FOR HIGH DYNAMIC RANGE SCENES 297

dL
dL

L
L

d

w

d

w
£       (5a)

That is, the derivative of the display luminance with respect
to the world luminance must not exceed the display lumi-
nance divided by the world luminance. Since we have an
expression for the display luminance as a function of world
luminance for our naive histogram equalization, we can
differentiate the exponentiation of (4) using the chain rule
and the derivative from (3) to get the following inequality:
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Since Ld is equal to exp( )Bde , this reduces to a constant ceil-
ing on ƒ(b):

f b
T b

L Ldmax dmin
( ) log( ) log( )£ -

D
          (5c)

In other words, as long as we make sure no frequency
count exceeds this ceiling, our resulting histogram will not
exaggerate contrast.

How can we create this modified histogram? We consid-
ered both truncating larger counts to this ceiling and redis-
tributing counts that exceeded the ceiling to other histo-
gram bins. After trying both methods, we found truncation
to be the simplest and most reliable approach. The only
complication introduced by this technique is that once fre-
quency counts are truncated, T changes, which changes the
ceiling. We therefore apply iteration until a tolerance crite-
rion is met, which says that fewer than 2.5 percent of the
original samples exceed the ceiling.1 Our pseudocode for

 is given below:

This iteration will fail to converge (and the function will
return ) if and only if the dynamic range of the out-
put device is already ample for representing the sample
luminances in the original histogram. This is evident from
(5c), since Δb is the world brightness range over the number
of bins:

f b
T
N

L L

L Li
wmax wmin

dmax dmin

( )
log( ) log( )
log( ) log( )

£ ◊
-
-

   (5d)

If the ratio of the world brightness range over the dis-
play brightness range is less than one (i.e., our world range

1. The tolerance of 2.5 percent was chosen as an arbitrary small value, and
it seems to make little difference either to the convergence time or the results.

fits in our display range), then our frequency ceiling is less
than the total count over the number of bins. Such a condi-
tion will never be met, since a uniform distribution of sam-
ples would still be over the ceiling in every bin. It is easiest
to detect this case at the outset, by checking the respective
brightness ranges, and applying a simple linear operator if
compression is unnecessary.

Fig. 10. Histogram adjustment with a linear ceiling on contrast pre-
serves both lamp visibility and tile appearance.

Fig. 11. A comparison of naïve histogram equalization (dashed line
labeled “equalized”) with histogram adjustment (dotted line labeled
“eq.linceil”). The linear mapping of brightness (solid line labeled
“linear”) is also shown.

Authorized licensed use limited to: Yale University. Downloaded on July 28, 2009 at 14:21 from IEEE Xplore.  Restrictions apply. 
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Authorized licensed use limited to: Yale University. Downloaded on July 28, 2009 at 14:21 from IEEE Xplore.  Restrictions apply. 

• Histogram equalization

• Linear ceiling (prevent contrast expansion)

linear histogram equalized with linear ceiling constraint
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Pointwise transforms
• Tumblin & Rushmeier 1993

• Ward et al. 1997
• problem: limited compression achievable

37
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Need for spatially varying operators
• Chiu et al. 1993

• Pattanaik et al. 1998
• Reinhard 2002

• Ashikhmin 2002
• Scale defined by linear filtering

38
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Chiu et al. 1993
• Locally varying contrast enhancement

• Prone to haloes

39

Figure 9: (left) A bare light bulb. (right) A light bulb with blooming
effect.

is the width of the filter and

1

2 2
2

2

2

2

2

is the normal-

ization constant

is a controllable exponent greater than one.

Note that the in refers to the coordinates relative to
the center of the filter. The particular form for F was chosen based
on three considerations: that it is a simple function whose shape is
controllable by , that the sum of the filter coefficients is one, and
that it has a zero first derivative at its boundary, which is needed to
avoid the introduction of Mach bands into the image (for example,
see [1]).

The result of passing this filter with 121, 8 and 0 8
is shown in Figure 10. This is the same basic approach used by
Nakamae et al. to generate their very impressive driving simula-
tion animations, although they only run their filter over luminaires.
While this saves time, it does not take into account the fact that scat-
tering in the eye takes place over the whole image. It is just more
perceivable near patches of high intensity. This can create errors
in images containing high intensity non-luminaires (e.g. specular
reflections of luminaires).

We do not model any kind of streaking from the luminaire, although
this was done by Nakamae et al. and in Ward’s Radiance program,
bothwith good results. We chose not to do this becausewe do not al-
ways see streakswhen viewing lights, andwe still do not understand
the mechanism behind these streaks when they do occur. Nakamae
et al. suggest that the streaks are caused by diffraction through the
lashes of the viewer. While this does cause some streaking effects,
some streaks can be seen even when the eye is wide open. One pos-
sibility is that the streaks are caused by imperfections or scratches
on the surface of the lens, but more information is needed to be
certain. We are fairly sure that blooming is caused by imperfections
in the lens, and that diffraction is not an important mechanism in
blooming. According to the IES Lighting Handbook[7]:

Figure 10: Image after glare and scaling transforms

Diffraction—regardless of whether rays are in focus or
not, there is always a certain amount of blur due to
the diffraction of light. This determines the ultimate
resolving power when the eye is in best focus, but the
blur is not large enough to be perceived.

This implies any blooming we do model should probably not have
any significant color divergence.

7 Conclusion

We have presented a method to map a particular high dynamic range
image to a normalized image that is easy to display on a CRT. Our
method is notmeant to be optimal,but a demonstration that spatially-
varying scaling is essential for the display of high dynamic range
images, and that this type of transform will be of great utility to
computer graphics practitioners. Our method assumed a medium
intensity scene (not on the extremes of our ability to dark adapt)
with a properly adapted person.

Our solution is based purely on experimental results. Currently we
are working on finding a theoretical basis for these results. One way
to interpret the final scaling function we used is that we have filtered
the image using multiple scales of the form proposed by Witkins in
his scaled space filtering work[20]. We think that this is a good area
to investigate and we hope it will yield a more hands-off approach.

Future work should also account for dark adaptation, chromatic
adaptation, time varying adaptation for walk-throughs, and optical
illusions. Other empirical techniques to map to should also be
investigated. It is our feeling that instead of filtering we might be
better off applying the normalization constraint along with contrast
preservation constraints to and follow a relaxation procedure.
This is a similar strategy to the device-directed rendering technique
used by Glassner et al. to force images into a device color gamut.
The brightness and color work could certainly be combined into a
system that fits an image to a three dimensional gamut.
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Pattanaik et al. 1998
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Figure 11: Tone mapping of high-dynamic range images. The images on the top are linear mappings of the original high-dynamic range images. The images
on the bottom are the mapping obtained by application of the visual model.
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However, it is impossible to obtain the proper rod signals. We
derived a linear transform of XYZ tristimulus values as a rough
approximation to the rod signal via linear regression of the color
matching functions and the V 0(�) curve. The resulting transform
is given in Equation 2 where R represents the rod response for a
pixel.

R = �0.702X + 1.039Y + 0.433Z (2)

Since it is possible to obtain negative values ofR when Equation 2
is applied to some saturated colors, it must be clipped to zero. We
chose a simple linear transformation for this approximation since it
scales over any range of luminance levels.
Finally the input signals must be calibrated prior to input to the

visual transforms. We chose to calibrate the model such that the
LMS cone signals and the rod signal are all equal to unity for an
equal-radiance spectrum at a luminance of 1.0 cd/m2.

3.3 Spatial Decomposition
The 4 images representing the calibrated photoreceptor responses
are then subjected to spatial processing. The first step is to carry
out the spatial decomposition of these images. We carry out this
decomposition by the Laplacian pyramid (difference-of-Gaussian
pyramid) approach proposed by Burt and Adelson [1983]. This
approach guarantees the construction of a non-negative low-pass
image in high dynamic range situations, and is perfectly invertible.
We first calculate a Gaussian pyramid using a 5 tap filter (with 1D
weights: .05 .25 .4 .25 .05) [Burt83]. Each level of the Gaussian
pyramid represents a low-pass image limited to spatial frequencies
half of those of the next higher level. Our Gaussian pyramid has 7
levels.
Each level of the Gaussian pyramid is then upsampled such that

each image is returned to the size of the initial image. Difference-
of-Gaussian images are then calculated by taking the image at each
level and subtracting the image from the next lower level. This re-
sults in 6 levels of band-pass images with peak spatial frequencies
at 16, 8, 4, 2, 1, and 0.5 cpd. These images can be thought of as
representations of the signals in six band-pass mechanisms in the
human visual system. The lowest-level low pass image is retained
since it must be used to reconstruct the image for reproduction ap-
plications.

3.4 Gain Control
The difference-of-Gaussian images are then converted to adapted
contrast signals using a luminance gain control. The gains are set
using TVI-like functions that represent the increment thresholds
of the rod and cone systems and the growth in response required
to allow perceived contrast to increase with luminance level (sub-
Weber’s law behavior). The gain functions are given for the cones
in Equation 3 and the rods in Equation 4.

G
cone

(I) =
1

0.555(I + 1.0)0.85
(3)

G
rod

(I) =
h
10

I2 + 10

i 
1

0.908(I + 0.001)0.85

�
(4)

In the above equations, I represents the rod or cone signal that
is used to set the level of adaptation and G(I) is the gain-control
factor. Equations 3 and 4 were derived to match available psy-
chophysical TVI and brightness matching data. The constraints in

Figure 8: Pictorial representation of the computational model. Note that
only 2 out of the 6 spatial mechanisms of one of the channels have been
shown for the purpose of illustration. Original image is a Snellen chart with
a 30:1 shadow boundary.

their derivation were that both the rod and cone gains were set equal
to 1.0 at a 1.0 cd/m2, the absolute thresholds would be around 1.0
cd/m2 for cones and 0.001 cd/m2 for rods, the ultimate slopes of
the functions would be 0.85 for sub-Weber’s Law behavior, and the
rods would saturate, losing 50% of their responsivity at roughly 3
cd/m2. In our model, each pixel in a given difference-of-Gaussian
image is multiplied by the gain derived from the corresponding
pixel in the lower-level low-pass image that was used in its deriva-
tion. This is illustrated in Equation 5.

ACI
n

= G (LP
n+1

) [LP
n

� LP
n+1

] (5)

ACI
n

is the adapted contrast image at level n and LP repre-
sents the various low-pass images. The adapted contrast images are
analogous to the contrast images that Peli [1990] obtained. How-
ever, in our model the magnitude of these images is a function of
luminance level as specified by the gain control functions. This is
necessary to allow prediction of luminance-dependent appearance

Figure 9: Application of the model to a wide range of illumination levels.

4 APPLYING THE MODEL

4.1 Wide Absolute Range
The series of images in Figure 9 illustrate application of the model
to a wide range of luminance levels spanning six orders of mag-
nitude from 0.1 to 10,000 cd/m2. These images were created us-
ing the model as described in section 3 with the low-pass images
adapted to the mean luminance of the input images. The size of
the original image was about 15� ⇥ 10�. For image reconstruction
as printed images, a mean adapting luminance of 700 cd/m2 was
assumed. This is approximately the luminance of a standard print
viewing booth. Thus this series of images should provide faithful
reproductions of the visual impression at the various luminance lev-
els when the printed figure is viewed at a mean luminance of 700
cd/m2. The gamut-mapping selected for this demonstration was a
linear scaling that placed the white areas of the 1000 cd/m2 image
at the paper white. While the model can be applied successfully
over a wider absolute range, it is impossible to reproduce the re-
sults within the limited dynamic range (approximately 50:1) of the
printed images unless a variable scaling is used.
Features to note in Figure 9 include: the decrease in luminance

contrast and colorfulness as luminance is decreased, the loss of
color vision upon the transition from cone to rod vision below 1
cd/m2, the decrease in spatial acuity with decrease in luminance,
and the changes in relative visibility of various colors and patterns.
The Purkinje shift (blue to gray and red to black) is also correctly
predicted upon changes from photopic to scotopic luminance levels.
All of these features illustrate that the model has appropriately en-
coded aspects of threshold visibility and suprathreshold appearance
over a wide range of luminance levels.

4.2 Chromatic Adaptation
Figure 10 shows the unique feature of this model that it can handle
changes in chromatic, as well as luminance-level, adaptation. The
top row of images illustrate a scene illuminated by a very reddish
light source, a nearly-white incandescent light source, and a very

blue light source as they would be rendered by a system incapable
of chromatic adaptation. The shift in color balance of the repro-
duced prints is objectionable since the human visual system largely
compensates for these changes in illumination color through its
mechanisms of chromatic adaptation. Since our model treats gain
control in each of the classes of cone photoreceptors independently,
it is capable of predicting changes in chromatic adaptation simi-
lar to those that would be predicted by a von Kries model. How-
ever, due to the nature of the gain control functions used to obtain
increases in contrast and colorfulness with luminance, the degree
of chromatic adaptation predicted by the model is less than 100%
complete.
The bottom row of images illustrate the output of the visual

model when the low-pass images are adapted to the mean signal
levels in the image and the reconstructed images are created assum-
ing adaptation to an equal-energy white. All of the computations
were completed at a mean luminance of 50 cd/m2. The gamut-
mapping selected for these images was a linear scaling that mapped
100 cd/m2 in the reconstructed image to the monitor white. 100
cd/m2 is approximately the maximum luminance of a display mon-
itor. The sizes of the original images were 10�⇥ 8�. These images
illustrate that the model almost completely accounts for the changes
in illumination color. However, as expected the reproduced appear-
ance from the reddish light source retains a slight reddish cast while
the reproduction from the bluish light source retains a slight bluish
cast. These reproductions match our perceptions of changes in il-
lumination color and replicate the incomplete nature of chromatic
adaptation that is widely recognized in the color science literature.
[Fairchild98]

4.3 High Dynamic Range
Figure 11 illustrates application of the model to the tone mapping
of high-dynamic range images. The original images have areas of
detail that are in high illumination levels and other areas that are in
low illumination levels. The left most image in Figure 11 is a global
illumination rendering. The other two were constructed from suc-
cessive photographic exposures using the technique of Debevec and
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• Careful tuning of filter scales to avoid haloes
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Figure 9: An example of scale selection. The top image shows cen-
ter and surround at different sizes. The lower images show the re-
sults of particular choices of scale selection. If scales are chosen
too small, detail is lost. On the other hand, if scales are chosen too
large, dark rings around luminance steps will form.

tion 7 makes thresholding V independent of absolute luminance
level, while the 2φa/s2 term prevents V from becoming too large
when V approaches zero.

Given a judiciously chosen scale for a given pixel, we observe
that V1(x, y, sm) may serve as a local average for that pixel. Hence,
the global tone reproduction operator of Equation 3 can be con-
verted into a local operator by replacing L with V1 in the denomi-
nator:

Ld(x, y) =
L(x, y)

1 + V1(x, y, sm(x, y))
(9)

This function constitutes our local dodging-and-burning operator.
The luminance of a dark pixel in a relatively bright region will sat-
isfy L < V1, so this operator will decrease the display luminance
Ld, thereby increasing the contrast at that pixel. This is akin to pho-
tographic “dodging”. Similarly, a pixel in a relatively dark region
will be compressed less, and is thus “burned”. In either case the
pixel’s contrast relative to the surrounding area is increased. For
this reason, the above scale selection method is of crucial impor-
tance, as illustrated in the example of Figure 9. If sm is too small,
then V1 is close to the luminance L and the local operator reduces
to our global operator (s1 in Figure 9). On the other hand, choosing

sm too large causes dark rings to form around bright areas (s3 in
the same figure), while choosing the scale as outlined above causes
the right amount of detail and contrast enhancement without intro-
ducing unwanted artifacts (s2 in Figure 9).

Using a larger scale sm tends to increase contrast and enhance
edges. The value of the threshold ε in Equation 8, as well as the
choice of φ in Equation 7, serve as edge enhancement parameters
and work by manipulating the scale that would be chosen for each
pixel. Decreasing ε forces the appropriate scale sm to be larger.
Increasing φ also tends to select a slightly larger scale sm, but only
at small scales due to the division of φ by s2. An example of the
effect of varying φ is given in Figure 10.

A further observation is that because V1 tends to be smaller than
L for very bright pixels, our local operator is not guaranteed to keep
the display luminance Ld below 1. Thus, for extremely bright areas
some burn-out may occur and this is the reason we clip the display
luminance to 1 afterwards. As noted in section 2, a small amount
of burn-out may be desirable to make light sources such as the sun
look very bright.

In summary, by automatically selecting an appropriate neigh-
borhood for each pixel we effectively implement a pixel-by-pixel
dodging and burning technique as applied in photography [Adams
1983]. These techniques locally change the exposure of a film, and
so darken or brighten certain areas in the final print.

4 Results
We implemented our algorithm in C++ and obtained the luminance
values from the input R, G and B triplets with L = 0.27R +
0.67G + 0.06B. The convolutions of Equation 5 were computed
using a Fast Fourier Transform (FFT). Because Gaussians are sepa-
rable, these convolutions can also be efficiently computed in image
space. This is easier to implement than an FFT, but it is somewhat
slower for large images. Because of the normalization by V1, our
method is insensitive to edge artifacts normally associated with the
computation of an FFT.

The key value setting is determined on a per image basis, while
unless noted otherwise, the parameter φ is set to 8.0 for all the im-
ages in this paper. Our new local operator uses Gaussian profiles
s at 8 discrete scales increasing with a factor of 1.6 from 1 pixel
wide to 43 pixels wide. For practical purposes we would like the
Gaussian profile at the smallest scale to have 2 standard deviations
overlap with 1 pixel. This is achieved by setting the scaling param-
eter α1 to 1/2

√
2 ≈ 0.35. The parameter α2 is 1.6 times as large.

The threshold ε used for scale selection was set to 0.05.
We use images with a variety of dynamic ranges as indicated

throughout this section. Note that we are using the photographic
definition of dynamic range as presented in Section 2. This results
in somewhat lower ranges than would be obtained if a conventional
computer graphics measure of dynamic range were used. However,
we believe the photographic definition is more predictive of how
challenging the tone reproduction of a given image is.

In the absence of well-tested quantitative methods to compare
tone mapping operators, we compare our results to a representative
set of tone reproduction techniques for digital images. In this sec-
tion we briefly introduce each of the operators and show images of
them in the next section. Specifically, we compare our new operator
of Equation 9 with the following.
Stockham’s homomorphic filtering Using the observation that

lighting variation occurs mainly in low frequencies and hu-
mans are more aware of albedo variations, this method op-
erates by downplaying low frequencies and enhancing high
frequencies [Oppenheim et al. 1968; Stockham 1972].

Tumblin-Rushmeier’s brightness matching operator . A model
of brightness perception is used to drive this global operator.
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Ashikhmin / A Tone Mapping Algorithm for High Contrast Images

Figure 3: Operation of our algorithm. In reading order: a. application of TM(L) to pixel luminances, b. computed adaptation
image after tone mapping by TM, c. details image (midlevel grey corresponds to value one), d. final result using equation 2, e.
same using visible contrast definition (equations 3 and 4), f. histogram-based tone mapping 11 result.

Figure 4: Tone mapping with different restrictions on local contrast |lc(s,x,y)|. Left: TM(L) directly applied to pixel lumi-
nances (formally, |lc| < 0) Middle: |lc| < 0.5 - note some artifacts due to halos and false jumps in adaptation level. Right:
|lc| < 0.1 - a better overall choice for this image. Corresponding detail views are also shown.

c© The Eurographics Association 2002.

Ashikhmin / A Tone Mapping Algorithm for High Contrast Images

Figure 3: Operation of our algorithm. In reading order: a. application of TM(L) to pixel luminances, b. computed adaptation
image after tone mapping by TM, c. details image (midlevel grey corresponds to value one), d. final result using equation 2, e.
same using visible contrast definition (equations 3 and 4), f. histogram-based tone mapping 11 result.
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• Scale defined by linear filtering
• Problem: haloes are tricky to avoid
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• Fattal et al. 2002 (gradient domain)
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Assuming constant curvatures and flow rates during each
timestep, the flux through each link is the product of timestep
length, motive force, and conductance, given by
and . We recommend a timestep of for
stability. and are the motive forces driving and
flux, given by and .
Conductances through and links are

(19)

and
(20)

where , are edginess estimates from Equations 17 and
18, , are leakfix multipliers explained below, initialized to
1.0.
Estimating image derivatives with adjacent pixel differences

causes “leakage” problems. Shocks in continuous images form
perfectly impermeable boundaries to prevent any fluid flow across
them. Though discrete images also form shocks, neither the gra-
dients nor the curvature estimates reach infinity due to the fixed,
finite spacing between pixels, allowing small fluid flows or “leaks”
across boundaries that should be impermeable. Small leaks over
many timesteps gradually erode the image boundaries and eventu-
ally destroy them all. Though several papers (e.g. [6]) offer strate-
gies for stopping the time evolution before boundary erosion is too
large, any chosen stopping time is a compromise between adequate
intra-region smoothing and minimal leakage. Instead, we devised a
simple leakage fix that works quite well for both discrete LCIS and
anisotropic diffusion.
Our leakage fix is a single self-adjusting “leakfix multiplier”

value or stored for each or link respectively and
used in Equations 19 and 20. We noticed in Equation 5 that shock
forming drives all the edginess estimates rapidly away from
the conductance threshold in the earliest timesteps. Edginess
estimates at boundaries are boosted towards infinity by shock
formation, and self-reinforced smoothing drives all other below
and towards zero. To identify and prevent leakage as an image

evolves, we continually compare against to find links that
cross image boundaries and should hold shocks, and we adjust

or of these links to amplify their edginess estimates
and drive conductance towards zero. Leakfix multipliers grow
exponentially with time in links where is consistently larger
than , but settles rapidly back towards if edginess falls below
. In our implementation, initially and for

all pixels, then for each timestep:

if ,
otherwise, and (21)

if ,
otherwise. (22)

The leakage fix also provides a convenient marker for bound-
aries; we label any link with a leakfixmultiplier greater than as
a “boundary link” that may cross a ridge-like boundary shock in the
image. Even though conductance drops to zero at LCIS shocks, our
analysis of continuous LCIS showed ridge-like shocks should not
evolve into step-like shocks during intra-region smoothing. To pre-
vent this divergence in our discrete implementation, we also mark
the pixels on either end of a boundary link as “boundary pixels”
and stop all subsequent flux into or out of these pixels; see the Pro-
ceedings CD-ROM for source code. With this simple two-part fix
we have not encountered any noticeable problems with leakage or
boundary erosion.

Figure 7: Images from an LCIS hierarchy reveal its methods. From
a part of the church scene of Figure 9, LCIS creates a boundary
pixel map (top left), and a simplified image (top right), shown after
contrast compression to make it displayable. A detail image (lower
left) holds the input minus the simplified image. A detailed dis-
playable image(lower right) is the sum of images at upper right and
lower left.
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Figure 8: Detail-preserving contrast reduction method using an
LCIS hierarchy, as used for Figures 1 and 9.

5 Contrast Reduction: LCIS Hierarchy
Discrete LCIS mimics the artist's drawing process in reverse; it
selectively removes details from a scene to leave only smoothly
shaded regions separated by sharp boundaries. We can easily re-
cover the removed details by subtracting the LCIS-smoothed im-
age from the original scene, and then follow the artists scheme for
detail-preserving contrast reduction: we strongly compress the con-
trasts of the simplified image, then add in the details with little or
no compression, as shown in Figure 7.
The LCIS hierarchy shown in Figure 8 shows the expandable

multiscale form we used to make Figures 1 and 9. Just as an artist
may create an image by progressive refinement, the LCIS hierar-
chy extracts preserved scene details with a progressive set of LCIS
settings. We first convert the scene to its base-10 logarithm so that
pixel differences directly correspond to contrasts (intensity ratios).
Our handling of color here is rudimentary: we apply LCIS only to
scene luminances and reconstruct color outputs using color ratios
as suggested by Schlick [12]. Next, we make a set of progressively
simpler images by applying LCIS with progressively larger val-
ues starting from zero: when , LCIS has no effect on the

large-scale

detail together

LCIS: A Boundary Hierarchy For
Detail-Preserving Contrast Reduction

Jack Tumblin and Greg Turk

Georgia Institute of Technology

Abstract
High contrast scenes are difficult to depict on low contrast dis-
plays without loss of important fine details and textures. Skilled
artists preserve these details by drawing scene contents in coarse-
to-fine order using a hierarchy of scene boundaries and shadings.
We build a similar hierarchy using multiple instances of a new low
curvature image simplifier (LCIS), a partial differential equation
inspired by anisotropic diffusion. Each LCIS reduces the scene to
many smooth regions that are bounded by sharp gradient disconti-
nuities, and a single parameter chosen for each LCIS controls
region size and boundary complexity. With a few chosen values

LCIS makes a set of progressively simpler
images, and image differences form a hierarchy of increasingly im-
portant details, boundaries and large features.
We construct a high detail, low contrast display image from this

hierarchy by compressing only the large features, then adding back
all small details. Unlike linear filter hierarchies such as wavelets,
filter banks, or image pyramids, LCIS hierarchies do not smooth
across scene boundaries, avoiding “halo” artifacts common to pre-
vious contrast reducing methods and some tone reproduction op-
erators. We demonstrate LCIS effectiveness on several example
images.

CR Descriptors: I.3.3 [Computer Graphics]: Picture/image
generation - Display algorithms; I.4.1 [Image Processing and
Computer Vision]: Enhancement -Digitization and ImageCapture
Keywords: Signal Processing, Displays, Non-Realistic Render-

ing, Level Of Detail Algorithms, Radiosity, Weird Math.

1 Introduction
Local adaptation, the ensemble of local sensitivity-adjusting pro-
cesses in the visual system, reveals visible details almost every-
where in a viewed scene. Even while driving at night, we see few
shadows that are truly featureless black. We can read the tiny let-
tering on the dazzling surface of a frosted incandescent bulb in a
desk lamp, yet we also see the dark room around us. Mechanisms
of visual appearance often cause us to underestimate large scene
contrasts. For example, we measured a piece of paper on a desk to
find it was 1,200 times brighter than the dark carpet in the foot-well

College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332-0280. ccsupjt@cc.gatech.edu, turk@cc.gatech.edu.

Figure 1: This low contrast image of a streetlight on a foggy night
was made by LCIS methods from an extremely high contrast ra-
diance map [2]; Small images show the original scene radiances
scaled by progressive factors of 10. Despite scene contrasts greater
than 100,000:1, LCIS methods preserve details impossible to cap-
ture in a single photograph, including long, dramatic fog streaks,
asphalt texture, and tree details in highlight and shadow.

beneath it, yet we could easily see the fibrous textures of both si-
multaneously. Making an image such as Figure 1 that captures both
the high contrast appearance of a scene and its small low-contrast
details is contradictory and difficult, and currently the best, most
satisfying depictions of these scenesmay be the creations of skilled
artists.
For three important reasons listed here, cameras and computer

graphics renderings have severe difficulties capturing, preserving,
and displaying the subtle textures and details in high contrast
scenes. First, available display contrasts are small and are easily
overwhelmed by the scene contrasts, where contrast is the ratio
between two measured light intensities. Newspaper photographs
achieve a maximum contrast of about 30:1, typically CRT displays
offer contrasts of no more than 100:1, and only the best photo-
graphic prints can provide contrasts as high as 1000:1. However,
scenes that include visible light sources, deep shadows, and specu-
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Weighted Sum Result:

LCIS Decomposition:Input: Weighted Sum Result:

Figure 2: Applied to a scanline from a high contrast scene, an LCIS
hierarchy separates large features and fine details as an artist might.
Compressing only its simplest features reduces contrasts but pre-
serves details.

lar highlights can reach contrasts of 100,000:1 or much more.
Second, the simplest ways to adjust scene intensities for display

will usually damage or destroy important details and textures. Most
commonly used adjustments are borrowed from photography, and
are given by

(1)

where are display and scene intensities in , is a
scale factor from film exposure, is contrast sensitivity and will
compress contrasts for values , and limits the output to
display intensity abilities. The simplest, default truncates out-
of-range intensities to the display limits, but this discards the fine
details and textures in the scene's shadows, highlights, or both, de-
pending on “exposure” or scale factor . Compressing all scene
contrasts uniformly by adjusting film gamma may compress large
contrasts sufficiently for display, but will also reduce smaller con-
trasts to invisibility. Choosing a better limiting function such as
the S-shaped response of film can help by gracefully compressing
contrasts of scene highlights and shadows, but any function choice
forces a tradeoff between preserving details at mid-range and de-
stroying them in shadows and highlights.
Third and most importantly, understanding of the human visual

system has not advanced sufficiently to allow construction of a
definitive, verifiable, quantitative model of visual appearance, es-
pecially for high contrast scenes where local adaptation effects are
strong. With these uncertainties, artists offer valuable guidance.
Skilled artists learn effective and pleasing ways to convey visual
appearance with limited display media, and for some uses their
methods are more appropriate than current visual appearancemod-
els built from psychophysicalmeasurements and small-signal mod-
els. Accordingly, LCIS is an attempt to mathematically mimic a
well-known artistic technique for rendering high contrast scenes.
When drawing or painting, many artists capture visual appear-

ance with a “coarse-to-fine” sequence of boundaries and shading.
Many begin with a sketch of large, important scene features and
then gradually add finer, more subtle details. Initial sketches hold
sharply defined boundaries around large, smoothly shaded regions
for the largest, highest contrast, and most important scene features.
The artist then adds more shadings and boundaries to build up fine
details and “fill in” the visually empty regions and capture rich de-
tail everywhere.
This method works particularly well for high contrast scenes be-

cause it permits separate contrast adjustments at every stage of in-
creasing detail and refinement. An artist drastically compresses the
contrasts of large features, then adds the fine details and textures
with little or no attenuation to ensure they are visible in the final
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Figure 3: A linear filter hierarchy does not adequately separate fine
details from large features. Compressing only the low-frequency
components to reduce contrasts causes halo artifacts.

image. The artist may also emphasize or mute scene components,
to control their prominence and direct the viewer's attention.
An artist's progressive image refinement is quite different from

widely used linear filter hierarchies, such as wavelets, filter banks,
MIP-maps, and steerable image pyramids. Instead of a hierarchy of
sinusoids, artists use a hierarchy of boundaries and shadings. For
example, consider a simple high contrast scene made from two ad-
jacent sheets of rough-textured paper. A black-colored sheet on the
left is dimly but uniformly lit, but the white sheet on the right is
illuminated by a strong white light source sharply masked to fall
only on the white paper. To an artist, the scene has only one strong
boundary and one faint texture everywhere, as in the scanline plots
of Figure 2 (created by LCIS), but to a linear filter decomposition
this is a rich, broad-band scene, as in Figure 3. At its largest scale,
the linear filter hierarchy is a blurred wash from black to white
showing only that the left and right intensities differ greatly. Each
finer level contains a strong, zero-mean, ripple-like “detail” that
sharpens and narrows the transition from black to white, as if each
were improving the focus of a camera. At the finest levels these
focus-like “details” overwhelm the much weaker components of the
paper texture. Reducing scene contrast by compressing only these
coarsest levels fails badly for linear filter methods because some
parts of the scene's step-like “large feature” have escaped compres-
sion by mixing with fine details of the paper texture. The resulting
display image, as shown in Figure 3, suffers from artifacts known
variously as “halos” [1], “overshoot-undershoot” or “gradient re-
versals” [19].
We have devised a new hierarchy that more closely follows artis-

tic methods for scene renderings. Each level of the hierarchy is
made from a “simplified” version of original scene made of sharp
boundaries and smooth shadings. We named the sharpening and
smoothing method “low curvature image simplifiers,” or LCIS, and
will show in Section 5 how to use it in a hierarchy to convert high
contrast scenes to low contrast, highly detailed display images such
as Figure 1.

2 Previous Work
Detail-preserving contrast reduction is a small but central part of
a broader problem: how can we accurately recreate the visual ap-
pearance of all sceneswithin the narrow limits of existing displays?
As discussed by Tumblin and Rushmeier [16], light levels dramat-
ically affect scene appearance; a forest by starlight looks very dif-
ferent in daylight because of complex, light dependent changes in
human ability to sense contrast, color, detail, and movement. They
advocated “tone reproduction operators” built from mathematical

Weighted Sum Result:

LCIS Decomposition:Input: Weighted Sum Result:

Figure 2: Applied to a scanline from a high contrast scene, an LCIS
hierarchy separates large features and fine details as an artist might.
Compressing only its simplest features reduces contrasts but pre-
serves details.
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pending on “exposure” or scale factor . Compressing all scene
contrasts uniformly by adjusting film gamma may compress large
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trasts to invisibility. Choosing a better limiting function such as
the S-shaped response of film can help by gracefully compressing
contrasts of scene highlights and shadows, but any function choice
forces a tradeoff between preserving details at mid-range and de-
stroying them in shadows and highlights.
Third and most importantly, understanding of the human visual
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definitive, verifiable, quantitative model of visual appearance, es-
pecially for high contrast scenes where local adaptation effects are
strong. With these uncertainties, artists offer valuable guidance.
Skilled artists learn effective and pleasing ways to convey visual
appearance with limited display media, and for some uses their
methods are more appropriate than current visual appearancemod-
els built from psychophysicalmeasurements and small-signal mod-
els. Accordingly, LCIS is an attempt to mathematically mimic a
well-known artistic technique for rendering high contrast scenes.
When drawing or painting, many artists capture visual appear-

ance with a “coarse-to-fine” sequence of boundaries and shading.
Many begin with a sketch of large, important scene features and
then gradually add finer, more subtle details. Initial sketches hold
sharply defined boundaries around large, smoothly shaded regions
for the largest, highest contrast, and most important scene features.
The artist then adds more shadings and boundaries to build up fine
details and “fill in” the visually empty regions and capture rich de-
tail everywhere.
This method works particularly well for high contrast scenes be-

cause it permits separate contrast adjustments at every stage of in-
creasing detail and refinement. An artist drastically compresses the
contrasts of large features, then adds the fine details and textures
with little or no attenuation to ensure they are visible in the final
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Figure 3: A linear filter hierarchy does not adequately separate fine
details from large features. Compressing only the low-frequency
components to reduce contrasts causes halo artifacts.

image. The artist may also emphasize or mute scene components,
to control their prominence and direct the viewer's attention.
An artist's progressive image refinement is quite different from

widely used linear filter hierarchies, such as wavelets, filter banks,
MIP-maps, and steerable image pyramids. Instead of a hierarchy of
sinusoids, artists use a hierarchy of boundaries and shadings. For
example, consider a simple high contrast scene made from two ad-
jacent sheets of rough-textured paper. A black-colored sheet on the
left is dimly but uniformly lit, but the white sheet on the right is
illuminated by a strong white light source sharply masked to fall
only on the white paper. To an artist, the scene has only one strong
boundary and one faint texture everywhere, as in the scanline plots
of Figure 2 (created by LCIS), but to a linear filter decomposition
this is a rich, broad-band scene, as in Figure 3. At its largest scale,
the linear filter hierarchy is a blurred wash from black to white
showing only that the left and right intensities differ greatly. Each
finer level contains a strong, zero-mean, ripple-like “detail” that
sharpens and narrows the transition from black to white, as if each
were improving the focus of a camera. At the finest levels these
focus-like “details” overwhelm the much weaker components of the
paper texture. Reducing scene contrast by compressing only these
coarsest levels fails badly for linear filter methods because some
parts of the scene's step-like “large feature” have escaped compres-
sion by mixing with fine details of the paper texture. The resulting
display image, as shown in Figure 3, suffers from artifacts known
variously as “halos” [1], “overshoot-undershoot” or “gradient re-
versals” [19].
We have devised a new hierarchy that more closely follows artis-

tic methods for scene renderings. Each level of the hierarchy is
made from a “simplified” version of original scene made of sharp
boundaries and smooth shadings. We named the sharpening and
smoothing method “low curvature image simplifiers,” or LCIS, and
will show in Section 5 how to use it in a hierarchy to convert high
contrast scenes to low contrast, highly detailed display images such
as Figure 1.

2 Previous Work
Detail-preserving contrast reduction is a small but central part of
a broader problem: how can we accurately recreate the visual ap-
pearance of all sceneswithin the narrow limits of existing displays?
As discussed by Tumblin and Rushmeier [16], light levels dramat-
ically affect scene appearance; a forest by starlight looks very dif-
ferent in daylight because of complex, light dependent changes in
human ability to sense contrast, color, detail, and movement. They
advocated “tone reproduction operators” built from mathematical
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Figure 16: Grove scene. Radiance map courtesy of Paul Debevec,
USC [Debevec and Malik 1997].
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(a) (b) (c) (d) (e) (f)

Figure 3: (a) An HDR scanline with dynamic range of 2415:1. (b) H(x) = log(scanline). (c) The derivatives H′(x). (d) Attenuated derivatives
G(x); (e) Reconstructed signal I(x) (as defined in eq. 1); (f) An LDR scanline exp(I(x)): the new dynamic range is 7.5:1. Note that each plot
uses a different scale for its vertical axis in order to show details, except (c) and (d) that use the same vertical axis scaling in order to show
the amount of attenuation applied on the derivatives.

We can now reconstruct a reduced dynamic range function I (up
to an additive constantC) by integrating the compressed derivatives:

I(x) =C+
∫ x

0
G(t) dt. (1)

Finally, we exponentiate in order to return to luminances. The entire
process is illustrated in Figure 3.
In order to extend the above approach to 2D HDR functions

H(x,y) we manipulate the gradients ∇H, instead of the derivatives.
Again, in order to avoid introducing spatial distortions into the im-
age, we change only the magnitudes of the gradients, while keeping
their directions unchanged. Thus, similarly to the 1D case, we com-
pute

G(x,y) = ∇H(x,y) Φ(x,y).

Unlike the 1D case we cannot simply obtain a compressed dynamic
range image by integrating G, since it is not necessarily integrable.
In other words, there might not exist an image I such that G = ∇I!
In fact, the gradient of a potential function (such as a 2D image)
must be a conservative field [Harris and Stocker 1998]. In other
words, the gradient ∇I = (∂ I/∂x,∂ I/∂y) must satisfy

∂ 2I
∂x∂y =

∂ 2I
∂y∂x ,

which is rarely the case for our G.
One possible solution to this problem is to orthogonally project

G onto a finite set of orthonormal basis functions spanning the set of
integrable vector fields, such as the Fourier basis functions [Frankot
and Chellappa 1988]. In our method we employ a more direct and
more efficient approach: search the space of all 2D potential func-
tions for a function I whose gradient is the closest to G in the least-
squares sense. In other words, I should minimize the integral

∫∫
F(∇I,G) dx dy, (2)

where F(∇I,G) = ‖∇I−G‖2 =
(

∂ I
∂x −Gx

)2
+

(
∂ I
∂y −Gy

)2
.

According to the Variational Principle, a function I that mini-
mizes the integral in (2) must satisfy the Euler-Lagrange equation

∂F
∂ I − d

dx
∂F
∂ Ix

− d
dy

∂F
∂ Iy

= 0,

which is a partial differential equation in I. Substituting F we obtain
the following equation:

2
(

∂ 2I
∂x2

− ∂Gx
∂x

)
+2

(
∂ 2I
∂y2

−
∂Gy
∂y

)
= 0.

Dividing by 2 and rearranging terms, we obtain the well-known
Poisson equation

∇2I = divG (3)

Figure 4: Gradient attenuation factors used to compress the Bel-
gium House HDR radiance map (Figure 2). Darker shades indicate
smaller scale factors (stronger attenuation).

where ∇2 is the Laplacian operator ∇2I = ∂ 2I
∂x2 + ∂ 2I

∂y2 and divG is the

divergence of the vector fieldG, defined as divG= ∂Gx
∂x + ∂Gy

∂y . This
is a linear partial differential equation, whose numerical solution is
described in Section 5.

4 Gradient attenuation function
As explained in the previous section, our method achieves HDR
compression by attenuating the magnitudes of the HDR image gra-
dients by a factor of Φ(x,y) at each pixel. We would like the at-
tenuation to be progressive, shrinking gradients of large magnitude
more than small ones.
Real-world images contain edges at multiple scales. Conse-

quently, in order to reliably detect all of the significant inten-
sity transitions we must employ a multi-resolution edge detection
scheme. However, we cannot simply attenuate each gradient at the
resolution where it was detected. This could result in halo artifacts
around strong edges, as mentioned in Section 2. Our solution is to
propagate the desired attenuation from the level it was detected at
to the full resolution image. Thus, all gradient manipulations occur
at a single resolution level, and no halo artifacts arise.
We begin by constructing a Gaussian pyramid H0,H1, . . . ,Hd ,

where H0 is the full resolution HDR image and Hd is the coarsest
level in the pyramid. d is chosen such that the width and the height
of Hd are at least 32. At each level k we compute the gradients
using central differences:

∇Hk =
(
Hk(x+1,y)−Hk(x−1,y)

2k+1
,
Hk(x,y+1)−Hk(x,y−1)

2k+1

)
.

At each level k a scaling factor ϕk(x,y) is determined for each pixel
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Figure 3: (a) An HDR scanline with dynamic range of 2415:1. (b) H(x) = log(scanline). (c) The derivatives H′(x). (d) Attenuated derivatives
G(x); (e) Reconstructed signal I(x) (as defined in eq. 1); (f) An LDR scanline exp(I(x)): the new dynamic range is 7.5:1. Note that each plot
uses a different scale for its vertical axis in order to show details, except (c) and (d) that use the same vertical axis scaling in order to show
the amount of attenuation applied on the derivatives.

We can now reconstruct a reduced dynamic range function I (up
to an additive constantC) by integrating the compressed derivatives:

I(x) =C+
∫ x

0
G(t) dt. (1)

Finally, we exponentiate in order to return to luminances. The entire
process is illustrated in Figure 3.
In order to extend the above approach to 2D HDR functions

H(x,y) we manipulate the gradients ∇H, instead of the derivatives.
Again, in order to avoid introducing spatial distortions into the im-
age, we change only the magnitudes of the gradients, while keeping
their directions unchanged. Thus, similarly to the 1D case, we com-
pute

G(x,y) = ∇H(x,y) Φ(x,y).

Unlike the 1D case we cannot simply obtain a compressed dynamic
range image by integrating G, since it is not necessarily integrable.
In other words, there might not exist an image I such that G = ∇I!
In fact, the gradient of a potential function (such as a 2D image)
must be a conservative field [Harris and Stocker 1998]. In other
words, the gradient ∇I = (∂ I/∂x,∂ I/∂y) must satisfy

∂ 2I
∂x∂y =

∂ 2I
∂y∂x ,

which is rarely the case for our G.
One possible solution to this problem is to orthogonally project

G onto a finite set of orthonormal basis functions spanning the set of
integrable vector fields, such as the Fourier basis functions [Frankot
and Chellappa 1988]. In our method we employ a more direct and
more efficient approach: search the space of all 2D potential func-
tions for a function I whose gradient is the closest to G in the least-
squares sense. In other words, I should minimize the integral
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where ∇2 is the Laplacian operator ∇2I = ∂ 2I
∂x2 + ∂ 2I

∂y2 and divG is the

divergence of the vector fieldG, defined as divG= ∂Gx
∂x + ∂Gy

∂y . This
is a linear partial differential equation, whose numerical solution is
described in Section 5.

4 Gradient attenuation function
As explained in the previous section, our method achieves HDR
compression by attenuating the magnitudes of the HDR image gra-
dients by a factor of Φ(x,y) at each pixel. We would like the at-
tenuation to be progressive, shrinking gradients of large magnitude
more than small ones.
Real-world images contain edges at multiple scales. Conse-

quently, in order to reliably detect all of the significant inten-
sity transitions we must employ a multi-resolution edge detection
scheme. However, we cannot simply attenuate each gradient at the
resolution where it was detected. This could result in halo artifacts
around strong edges, as mentioned in Section 2. Our solution is to
propagate the desired attenuation from the level it was detected at
to the full resolution image. Thus, all gradient manipulations occur
at a single resolution level, and no halo artifacts arise.
We begin by constructing a Gaussian pyramid H0,H1, . . . ,Hd ,

where H0 is the full resolution HDR image and Hd is the coarsest
level in the pyramid. d is chosen such that the width and the height
of Hd are at least 32. At each level k we compute the gradients
using central differences:

∇Hk =
(
Hk(x+1,y)−Hk(x−1,y)

2k+1
,
Hk(x,y+1)−Hk(x,y−1)

2k+1

)
.

At each level k a scaling factor ϕk(x,y) is determined for each pixel
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Figure 5: The top two rows compare results produced by our method (middle column) to those of Ward Larson et al.(left column) and those of
Tumblin and Turk (right column). The differences are discussed in Section 6. The bottom row shows three more examples of results produced
by our method (the thumbnails next to each image show some of the LDR images from which the HDR radiance map was constructed).

Ward | Fattal | LCIS
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