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Sampled representations

• How to store and compute with continuous functions?

• Common scheme for representation: samples
write down the function’s values at many points
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Reconstruction

• Making samples back into a continuous function
for output (need realizable method)

for analysis or processing (need mathematical method)
amounts to “guessing” what the function did in between
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Filtering

• Processing done on a function
can be executed in continuous form (e.g. analog circuit)

but can also be executed using sampled representation

• Simple example: smoothing by averaging
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Roots of sampling

• Nyquist 1928; Shannon 1949
famous results in information theory

• 1940s: !rst practical uses in telecommunications

• 1960s: !rst digital audio systems

• 1970s: commercialization of digital audio

• 1982: introduction of the Compact Disc
the !rst high-pro!le consumer application

• This is why all the terminology has a communications or audio “"avor”
early applications are 1D; for us 2D (images) is important
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Sampling in digital audio

• Recording: sound to analog to samples to disc

• Playback: disc to samples to analog to sound again
how can we be sure we are !lling in the gaps correctly?
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
unsurprising result: information is lost

surprising result: indistinguishable from lower frequency
also was always indistinguishable from higher frequencies

aliasing: signals “traveling in disguise” as other frequencies
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Sneak preview

• Sampling creates copies of the signal at higher frequencies
• Aliasing is these frequencies leaking into the reconstructed 

signal

– frequency fs – x shows up as frequency x

• The solution is filtering
– during sampling, filter to keep the high frequencies out so they 

don’t create aliases at the lower frequencies
– during reconstruction, again filter high frequencies to avoid 

including high-frequency aliases in the output. 
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Preventing aliasing

• Introduce lowpass !lters:
remove high frequencies leaving only safe, low frequencies

choose lowest frequency in reconstruction (disambiguate)
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Linear !ltering: a key idea

• Transformations on signals; e.g.:
bass/treble controls on stereo

blurring/sharpening operations in image editing
smoothing/noise reduction in tracking

• Key properties
linearity: !lter(f + g) = !lter(f) + !lter(g)
shift invariance: behavior invariant to shifting the input

• delaying an audio signal
• sliding an image around

• Can be modeled mathematically by convolution
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Convolution warm-up

• basic idea: de!ne a new function by averaging over a sliding window

• a simple example to start off: smoothing
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Convolution warm-up

• Same moving average operation, expressed mathematically:
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Discrete convolution

• Simple averaging:

every sample gets the same weight

• Convolution: same idea but with weighted average

each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a moving weighted average
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Filters

• Sequence of weights a[j] is called a filter

• Filter is nonzero over its region of support
usually centered on zero: support radius r

• Filter is normalized so that it sums to 1.0
this makes for a weighted average, not just any

old weighted sum

• Most !lters are symmetric about 0
since for images we usually want to treat

left and right the same

a box !lter

14
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Convolution and !ltering

• Can express sliding average as convolution with a box filter

• abox = […, 0, 1, 1, 1, 1, 1, 0, …]

15
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Example: box and step
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Example: box and step
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Convolution and !ltering

• Convolution applies with any sequence of weights

• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16

17
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Discrete convolution

• Notation:

• Convolution is a multiplication-like operation
commutative

associative
distributes over addition

scalars factor out

identity: unit impulse e = […, 0, 0, 1, 0, 0, …]

• Conceptually no distinction between !lter and signal

18
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Discrete !ltering in 2D

• Same equation, one more index

now the !lter is a rectangle you slide around over a grid of numbers

• Commonly applied to images
blurring (using box, using gaussian, …)

sharpening (impulse minus blur)

• Usefulness of associativity
often apply several !lters one after another: (((a * b1) * b2) * b3)

this is equivalent to applying one !lter: a * (b1 * b2 * b3)
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original    |    box blur sharpened    |    gaussian blur
[Philip Greenspun]
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original    |    box blur sharpened    |    gaussian blur
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Continuous convolution: warm-up

• Can apply sliding-window average to a continuous function just as well
output is continuous

integration replaces summation
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Continuous convolution

• Sliding average expressed mathematically:

note difference in normalization (only for box)

• Convolution just adds weights

weighting is now by a function
weighted integral is like weighted average

again bounds are set by support of f(x)

22
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One more convolution

• Continuous–discrete convolution

used for reconstruction and resampling
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Continuous-discrete convolution
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Continuous-discrete convolution
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Continuous-discrete convolution
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Continuous-discrete convolution
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Resampling

• Changing the sample rate
in images, this is enlarging and reducing

• Creating more samples:
increasing the sample rate

“upsampling”
“enlarging”

• Ending up with fewer samples:
decreasing the sample rate

“downsampling”
“reducing”
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Resampling

• Reconstruction creates a continuous function
forget its origins, go ahead and sample it
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Cont.–disc. convolution in 2D

• same convolution—just two variables now

loop over nearby pixels, 
average using !lter weight

looks like discrete !lter,
but offsets are not integers
and !lter is continuous

remember placement of !lter
relative to grid is variable

27
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A gallery of !lters

• Box !lter
Simple and cheap

• Tent !lter
Linear interpolation

• Gaussian !lter
Very smooth antialiasing !lter

• B-spline cubic
Very smooth

• Catmull-rom cubic
Interpolating

• Mitchell-Netravali cubic
Good for image upsampling

28
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Box !lter
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Tent !lter
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Gaussian !lter
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B-Spline cubic

32
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Catmull-Rom cubic
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Michell-Netravali cubic
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Effects of reconstruction !lters

• For some !lters, the reconstruction process winds up implementing a 
simple algorithm

• Box !lter (radius 0.5): nearest neighbor sampling
box always catches exactly one input point

it is the input point nearest the output point

so output[i, j] = input[round(x(i)), round(y(j))]
x(i) computes the position of the output coordinate i on the input grid

• Tent !lter (radius 1): linear interpolation
tent catches exactly 2 input points

weights are a and (1 – a)
result is straight-line interpolation from one point to the next
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Properties of !lters

• Degree of continuity

• Impulse response

• Interpolating or no

• Ringing, or overshoot

interpolating filter used for reconstruction

36
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Ringing, overshoot, ripples

• Overshoot
caused by

negative !lter
values

• Ripples
constant in, 

non-const. out

ripple free when:
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Constructing 2D !lters

• Separable !lters (most common approach)
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Reducing and enlarging

• Very common operation
devices have differing resolutions

applications have different memory/quality tradeoffs

• Also very commonly done poorly

• Simple approach: drop/replicate pixels

• Correct approach: use resampling

39
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1000 pixel width [Philip Greenspun]
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250 pixel width

by dropping pixels gaussian !lter

[Philip Greenspun]
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4000 pixel width

box reconstruction !lter bicubic reconstruction !lter
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Types of artifacts

• Garden variety
what we saw in this natural image

!ne features become jagged or sparkle

• Moiré patterns

44



Lecture 13 •  Cornell CS4620 Fall 2008

600ppi scan of a color halftone image
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downsampling a high resolution scan

by dropping pixels gaussian !lter
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Types of artifacts

• Garden variety
what we saw in this natural image

!ne features become jagged or sparkle

• Moiré patterns
caused by repetitive patterns in input
produce large-scale artifacts; highly visible

• These artifacts are aliasing just like in the audio example earlier

• How do I know what !lter is best at preventing aliasing?
practical answer: experience

theoretical answer: there is another layer of cool math behind all this
• based on Fourier transforms
• provides much insight into aliasing, !ltering, sampling, and reconstruction
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Checkpoint

• Want to formalize sampling and reconstruction
– define impulses
– then we can talk about S&R with only one datatype

• Define Fourier transform
• Destination: explaining how aliases leak into result



© 2005 Steve Marschner • Cornell CS465 Fall 2005 • Lecture 6

Mathematical model

• We have said sampling is storing the values on a grid
• For analysis it’s useful to think of the sampled 

representation in the same space as the original
– I’ll do this using impulse functions at the sample points
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Impulse function

• A function that is confined to a very small interval
– but still has unit integral
– really, the limit of a sequence of ever taller and narrower 

functions
– also called Dirac delta function

• Key property: multiplying by an impulse selects the value at 
a point
– Defn via integral

• Impulse is the identity for convolution
– “impulse response” of a filter
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Sampling & recon. reinterpreted

• Start with a continuous signal
• Convolve it with the sampling filter
• Multiply it by an impulse grid
• Convolve it with the reconstruction filter
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Checkpoint

• Formalized sampling and reconstruction
– used impulses with multiplication and convolution
– can talk about S&R with only one datatype

• Define Fourier transform
• Destination: explaining how aliases leak into result
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Fourier series

• Probably familiar idea of adding up sines and cosines to 
approximate a periodic function
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Fourier series
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Fourier transform

• Like Fourier series but for aperiodic functions
– Fourier series: only multiples of base frequency

• Fourier transform: let period go to infinity
– eventually all frequencies are needed
– result: countable sum turns into integral
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The Fourier transform

• Any function on the real line can be represented as an 
infinite sum of sine waves
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The Fourier transform
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The Fourier transform

• The coefficients of those sine waves form a continuous 
function of frequency

• That function, which has the same datatype as the first 
one, is the Fourier transform.

• Phase encoded in complex number
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Fourier transform properties

• F.T. is its own inverse (just about)
• Frequency space is a dual representation

– amplitude known as “spectrum”
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Fourier pairs

• sinusoid — impulse pair
• box — sinc

• tent — sinc2

• bspline — sinc4

• gaussian — gaussian 
	

 (inv. width)

• imp. grid — imp. grid 
	

 (1/d spacing)
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More Fourier facts

• F.T. preserves energy
– That is, the squared integral

• DC component (average value)
– It shows up at F(0)
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More Fourier facts

• Dilation (stretching/squashing)
– Results in inverse dilation in F.T.
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Convolution and multiplication

• They are dual to one another under F.T.

• Lowpass filters
– Most of our “blurring” filters have most of their F.T. at low 

frequencies
– Therefore they attenuate higher frequencies
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Checkpoint

• Formalized sampling and reconstruction
– used impulses with multiplication and convolution

• Can talk about S&R with only one datatype
• Defined Fourier transform

– alternate representation for functions
– turns convolution, which seems hard, into multiplication, which 

is easy

• Destination: explaining how aliases leak into result
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Sampling and reconstruction in F.T.

• Look at our sampling/reconstruction formulation in 
Fourier domain
– Convolve with filter = remove high frequencies
– Multiply by impulse grid = convolve with impulse grid

• that is, make a bunch of copies
– Convolve with filter = remove extra copies
– Left with approximation of original

• but filtered a couple of times
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Aliasing in sampling/reconstruction
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Aliasing in sampling

• If sampling filter is not adequate, spectra will overlap
• No way to fix once it’s happened

– can only use drastic reconstruction filter to eliminate

• Nyquist criterion
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Preventing aliasing in sampling

• Use high enough sample frequency
– works when signal is band limited
– sample rate 2 * (highest freq.) is enough to capture all details

• Filter signal to remove high frequencies
– make the signal band limited
– remove frequencies above 0.5 * (sample freq.) (Nyquist)
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Effect of sample rate on aliasing
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Smoothing (lowpass filtering)
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Effect of smoothing on aliasing
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Aliasing in reconstruction

• If reconstruction filter is inadequate, will catch alias spectra
• Result: high frequency alias components
• Can happen even if sampling is ideal
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Reconstruction filters
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Sampling filters

• “Ideal” is box filter in frequency
– which is sinc function in space

• Finite support is desirable
– compromises are necessary

• Filter design: passband, stopband, and in between
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Useful sampling filters

• Sampling theory gives criteria for choosing
• Box filter

– sampling: unweighted area average
– reconstruction: e.g. LCD

• Gaussian filter
– sampling: gaussian-weighted area average
– reconstruction: e.g. CRT

• Piecewise cubic
– good small-support reconstruction filter
– popular choice for high-quality resampling (next lecture)
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Resampling filters

• Resampling, logically, is two steps
– first: reconstruct continuous signal
– second: sample signal at the new sample rate

• Each step requires filtering
– reconstruction filter
– sampling filter

• This amounts to two successive convolutions
– so regroup into one operation:

– single filter both reconstructs and antialiases
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Resampling in frequency space



© 2005 Steve Marschner • Cornell CS465 Fall 2005 • Lecture 6

Sizing reconstruction filters

• Has to perform as a reconstruction filter
– has to be at least big enough relative to input grid

• Has to perform as a sampling filter
– has to be at least big enough relative to output grid

• Result: filter size is max of two grid spacings
– upsampling (enlargement): determined by input
– downsampling (reduction): determined by output
– for intuition think of extreme case (10x larger or smaller) 
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How this plays out in n-D

• Fourier transform is in terms of “plane waves”

• Separable products of 1D functions transform separably

F{f(x)g(y)} = F (u)G(v)

F (u) =

Z

IRn

f(x)e�2⇡ix·udx



• By separability everything goes through the same as in 1D
– impulse grid, filter, reconstruction

• Possibility of non-rectangular band-limiting
– any region that does not overlap is fair game
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How this plays out in n-D

ĝ k̂ kĝĝ =k̂

g k kg

Figure 1: Two-dimensional sampling in the space domain (top) and the frequency domain (bottom).

g and a complex sinusoid of frequency ωx ωy , and that
g x y sums up the values at x y of sinusoids of all pos-
sible frequencies ωx ωy , weighted by ĝ. We call ĝ the
Fourier transform of g, and ĝ the spectrum of g. Since
the Fourier transform is invertible, g and ĝ are two repre-
sentations of the same function; we refer to g as the space
domain representation, or just the signal, and ĝ as the fre-
quency domain representation. Of particular importance is
that the Fourier transform of a product of two functions is
the convolution of their individual Fourier transforms, and
vice versa: gh ĝ ĥ; g h ĝĥ.

2.2 Basic sampling theory
We represent a point sample as a scaled Dirac impulse

function. With this definition, sampling a signal is equiva-
lent tomultiplying it by a grid of impulses, one at each sam-
ple point, as illustrated in the top half of Figure 1.

The Fourier transform of a two-dimensional impulse
grid with frequency fx in x and fy in y is itself a grid of im-
pulses with period fx in x and fy in y. If we call the impulse
grid k x y and the signal g x y , then the Fourier transform
of the sampled signal, gk, is ĝ k̂. Since k̂ is an impulse grid,
convolving ĝwith k̂ amounts to duplicating ĝ at every point
of k̂, producing the spectrum shown at bottom right in Fig-
ure 1. We call the copy of ĝ centered at zero the primary
spectrum, and the other copies alias spectra.

If ĝ is zero outside a small enough region that the alias
spectra do not overlap the primary spectrum, then we can
recover ĝ by multiplying gk by a function ĥ which is one
inside that region and zero elsewhere. Such a multiplica-
tion is equivalent to convolving the sampled data gk with h,
the inverse transform of ĥ. This convolution with h allows
us to reconstruct the original signal g by removing, or filter-
ing out, the alias spectra, so we call h a reconstruction filter.
The goal of reconstruction, then, is to extract, or pass, the
primary spectrum, and to suppress, or stop, the alias spectra.
Since the primary spectrum comprises the low frequencies,

the reconstruction filter is a low-pass filter.
It is clear from Figure 1 that the simplest region to

which we could limit ĝ is the region of frequencies that are
less than half the sampling frequency along each axis. We
call this limiting frequency the Nyquist frequency, denoted
fN, and the region the Nyquist region, denoted RN . We de-
fine an ideal reconstruction filter to have a Fourier trans-
form that has the value one in the Nyquist region and zero
outside it.1

2.3 Volume reconstruction
Extending the above to handle the three-dimensional

signals encountered in volume rendering is straightforward:
the sampling grid becomes a three-dimensional lattice, and
the Nyquist region a cube. See [5] for a discussion of signal
processing in arbitrary dimensions.

Given this new Nyquist region, the ideal convolution
filter is the inverse transform of a cube, which is the product
of three sinc functions:

hI x y z 2 fN 3 sinc 2 fNx sinc 2 fNy sinc 2 fNz

Thus, in principle, a volume signal can be exactly re-
constructed from its samples by convolving with hI, pro-
vided that the signal was suitably band-limited2 before it
was sampled.

In practice, we can not implement hI, since it has in-
finite extent in the space domain, and we are faced with
choosing an imperfect filter. This will inevitably introduce
some artifacts into the reconstructed function.

3 Practical reconstruction issues
The image processing field, whichmakes extensive use

of reconstruction filters for image resampling (e.g., [10, 16,
1Other definitions of an ideal filter are possible—for example, a filter

h such that ĥ is one inside a circle of radius fN.
2A signal is band-limited if its spectrum is zero outside some bounded

region in frequency space, usually a cube centered on the origin.
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Sampling in n-D

• With sampling on a regular lattice and reconstruction with 
a separable filter, everything is pretty much the same

• Non-rectangular grids are possible
– Hexagonal arrays in 2D
– FCC and BCC grids for volume data
– Interlaced video

• Band limiting now means an n-D region
– cubes are fine
– anything that is non-overlapping is also fine
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Summary

• Want to explain aliasing and answer questions about how 
to avoid it

• Formalized sampling and reconstruction using impulse 
grids and convolution

• Fourier transform gives insight into what happens when we 
sample

• Nyquist criterion tells us what kind of filters to use


