Regularization and Markov Random Fields (MRF)

CS 664 Spring 2008

Regularization in Low Level Vision

- Low level vision problems concerned with estimating some quantity at each pixel
 - Visual motion (u(x,y),v(x,y))
 - Stereo disparity d(x,y)
 - Restoration of true intensity b(x,y)
- Problem under constrained
 - Only able to observe noisy values at each pixel
 - Sometimes single pixel not enough to estimate value
- Need to apply other constraints

Smooth but with discontinuities

Small discontinuities important

Smoothness Constraints

- Estimated values should change slowly as function of (x,y)
 - Except "boundaries" which are relatively rare
- Minimize an error function

$$E(r(x,y)) = V(r(x,y)) + \lambda D_I(r(x,y))$$

- For r being estimated at each x,y location
- V penalizes change in r in local neighborhood
- D_I penalizes r disagreeing with image data
- λ controls tradeoff of these smoothness and data terms
 - Can itself be parameterized by x,y

Regularization for Visual Motion

- Use quadratic error function
- Smoothness term

$$V(u(x,y),v(x,y)) = \sum \sum u_x^2 + u_y^2 + v_x^2 + v_y^2$$

- Where subscripts denote partials $u_x = \partial u(x,y)/\partial x$, etc.
- Data term

$$D_{I}(u(x,y),v(x,y)) = \sum \sum (I_{x} \cdot u + I_{y} \cdot v + I_{t})^{2}$$

- Only for smoothly changing motion fields
 - No discontinuity boundaries
 - Does not work well in practice

Problems With Regularization

- Computational difficulty
 - Extremely high dimensional minimization problem
 - 2mn dimensional space for m×n image and motion estimation
 - If k motion values, k^{2mn} possible solutions
 - Can solve with gradient descent methods
- Smoothness too strong a model
 - Can in principle estimate variable smoothness penalty $\lambda_I(x,y)$
 - More difficult computation
 - Need to relate λ_I to V, D_I

Regularization With Discontinuities

- Line process
 - Estimate binary value representing when discontinuity between neighboring pixels
- Pixels as sites s∈ s (vertices in graph)
 - Neighborhood \mathcal{N}_s sites connected to s by edges
 - Grid graph 4-connected or 8-connected
 - Write smoothness term analogously as

$$\sum_{s \in S} \sum_{n \in NS} (u_s - u_n)^2 + (v_s - v_n)^2$$

Line Process

 Variable smoothness penalty depending on binary estimate of discontinuity I_{s,n}

$$\sum_{s \in S} \sum_{n \in NS} \left[\alpha_s (1 - I_{s,n}) ((u_s - u_n)^2 + (v_s - v_n)^2) + \beta_s I_{s,n} \right]$$

- With α_s , β_s constants controlling smoothness
- Minimization problem no longer as simple
 - Graduated non-convexity (GNC)

Robust Regularization

- Both smoothness and data constraints can be violated
 - Result not smooth at certain locations
 - Addressed by line process
 - Data values bad at certain locations
 - E.g., specularities, occlusions
 - Not addressed by line process
- Unified view: model both smoothness and data terms using robust error measures
 - Replace quadratic error which is sensitive to outliers

Robust Formulation

 Simply replace quadratic terms with robust error function ρ

$$\sum_{s \in \mathcal{S}} \left[\rho_1 (I_x \cdot u_s + I_y \cdot v_s + I_t) + \lambda \sum_{n \in \mathcal{N}_S} \left[\rho_2 (u_s - u_n) + \rho_2 (v_s - v_n) \right] \right]$$

- In practice often estimate first term over small region around s
- Some robust error functions
 - Truncated linear: $\rho_{\tau}(x) = \min(\tau, x)$
 - Truncated quadratic: $\rho_{\tau}(x) = \min(\tau, x^2)$
 - Lorentzian: $\rho_{\sigma}(x) = \log(1 + \frac{1}{2}(x/\sigma)^2)$

Influence Functions

 Useful to think of error functions in terms of degree to which a given value affects

the result

Relation to Line Process

- Can think of robust error function as performing "outlier rejection"
 - Influence (near) zero for outliers but non-zero for inliers
- Line process makes a binary inlier/outlier decision
 - Based on external process or on degree of difference between estimated values
- Both robust estimation and line process formulations local characterizations

Relationship to MRF Models

- Markov random field (MRF)
 - Collection of random variables
 - Graph structure models spatial relations with local neighborhoods (Markov property)
 - Explicit dependencies among pixels
- Widely used in low-level vision problems
 - Stereo, motion, segmentation
- Seek best label for each pixel
 - Bayesian model, e.g., MAP estimation
- Common to consider corresponding energy minimization problems

Markov Random Fields in Vision

- Graph G=(V,E)
 - Assume vertices indexed 1, ..., n
 - Observable variables $y = \{y_1, ..., y_n\}$
 - Unobservable variables $x = \{x_1, ..., x_n\}$
 - Edges connect each x_i to certain neighbors \mathcal{N}_{xi}
 - Edges connect each x_i to y_i
 - Consider cliques of size 2
 - Recall clique is fully connected sub-graph
 - 4-connected grid or 2-connected chain

MRF Models in Vision

- Prior P(x) factors into product of functions over cliques
 - Due to Hammersly-Clifford Theorem

$$P(x) = \prod_{C} \Psi_{C}(x_{c})$$

- Ψ_C termed clique potential, of form exp(-V_C)
- For clique size 2 (cliques correspond to edges)

$$P(x) = \prod_{i,j} \Psi_{ij}(x_i,x_j)$$

Probability of hidden and observed values

$$P(x,y) = \prod_{i,j} \Psi_{ij}(x_i,x_j) \prod_i \Psi_{ii}(x_i,y_i)$$

 Given particular clique energy V_{ij} and observed y, seek values of x maximizing P(x,y)

Markov Property

- Neighborhoods completely characterize conditional distributions
 - Solving a global problem with local relationships
- Probability of values over subset S given remainder same as for that subset given its neighborhood
 - Given S \subset V and S c =V-S P($x_S \mid x_{Sc}) = P(x_S \mid \mathcal{N}_{xS})$
- Conceptually and computationally useful

MRF Estimation

- Various ways of maximizing probability
 - Common to use MAP estimate $\operatorname{argmax}_{x} P(x|y)$ $\operatorname{argmax}_{x} \prod_{i,j} \Psi_{ij}(x_{i},x_{j}) \prod_{i} \Phi_{i}(x_{i},y_{i})$
- Probabilities hard to compute with
 - Use logs (or often negative log) argmin_x $\sum_{i,j} V_{ij}(x_i,x_j) + \sum_i D_i(x_i,y_i)$
- In energy function formulation often think of assigning best label $f_i \in \mathcal{L}$ to each node v_i given data y_i

$$\operatorname{argmin}_{f} \left[\sum_{i} D(y_{i}, f_{i}) + \sum_{i,j} V(f_{i}, f_{j}) \right]$$

Similar to Regularization

Summation of data and smoothness terms

$$\begin{aligned} & \text{argmin}_f \left[\sum_i D(y_i, f_i) + \sum_{i,j} V(f_i, f_j) \right] \\ & \text{argmin}_f \ \sum_{s \in \mathcal{S}} \left[\rho_1(d_s, f_s) + \lambda \sum_{n \in \mathcal{N}_S} \left[\rho_2(f_s - f_n) \right] \right] \end{aligned}$$

- Data term D vs. robust data function ρ_1
- Clique term V vs. robust smoothness function ρ_2
 - Over cliques rather than neighbors of each site
 - Nearly same definitions on four connected grid
- Probabilistic formulation particularly helpful for learning problems
 - Parameters of D, V or even form of D, V

Common Clique Energies

- Enforce "smoothness", robust to outliers
 - Potts model
 - Same or outlier (based on label identity)

$$V_{\tau}(f_i, f_j) = 0$$
 when $f_i = f_j$, τ otherwise

- Truncated linear model
 - Small linear change or outlier (label difference)

$$V_{\sigma,\tau}(f_i,f_j) = \min(\tau, \sigma|f_i-f_j|)$$

- Truncated quadratic model
 - Small quadratic change or outlier (label difference)

$$V_{\sigma,\tau}(f_i,f_j) = \min(\tau, \sigma|f_i-f_j|^2)$$

1D Graphs (Chains)

- Simpler than 2D for illustration purposes
- Fast polynomial time algorithms
- Problem definition
 - Sequence of nodes V=(1, ..., n)
 - Edges between adjacent pairs (i, i+1)
 - Observed value y_i at each node
 - Seek labeling $f = (f_1, ..., f_n), f_i \in \mathcal{L},$ minimizing

$$\sum_{i} [D(y_i, f_i) + V(f_i, f_{i+1})]$$
 (note $V(f_n, f_{n+1}) = 0$)

Contrast with smoothing by convolution
 d_i 1 3 2 1 3 12 10 11 10 12

```
d<sub>i</sub> 1 3 2 1 3 12 10 11 10 12

f<sub>i</sub> 2 2 2 2 2 11 11 11 11 11
```


Viterbi Recurrence

- Don't need explicit min over f=(f₁, ..., f_n)
 - Instead recursively compute

$$s_i(f_i) = D(y_i, f_i) + \min_{f_{i-1}} (s_{i-1}(f_{i-1}) + V(f_{i-1}, f_i))$$

 Note s_i(f_i) for given i encodes a lowest cost label sequence ending in state f_i at that node

Viterbi Algorithm

- Find a lowest cost assignment f₁, ..., f_n
- Initialize

$$s_1(f_1) = D(y_1, f_1) + \pi$$
, with π cost of f_1 if not uniform

Recurse

$$s_i(f_i) = D(y_i, f_i) + min_{f_{i-1}} (s_{i-1}(f_{i-1}) + V(f_{i-1}, f_i))$$

 $b_i(f_i) = argmin_{f_{i-1}} (s_{i-1}(f_{i-1}) + V(f_{i-1}, f_i))$

- Terminate
 min_{fn} s_n(f_n), cost of cheapest path (neg log prob)
 f_n*= argmin_{fn} s_n(f_n)
- Backtrack

$$f_{n-1}^* = b_n(f_n)$$

Viterbi Algorithm

- For sequence of n data elements, with m possible labels per element
 - Compute s_i(f_i) for each element using recurrence
 - O(nm²) time
 - For final node compute f_n minimizing $s_n(f_n)$
 - Trace back from node back to first node
 - Minimizers computed when computing costs on "forward" pass
- First step dominates running time
- Avoid searching exponentially many paths

Large Label Sets Problematic

- Viterbi slow with large number of labels
 - $O(m^2)$ term in calculating $s_i(f_i)$
- For our problems V usually has a special form so can compute in linear time
 - Consider linear clique energy

$$s_i(f_i) = D(y_i, f_i) + \min_{f_{i-1}} (s_{i-1}(f_{i-1}) + |f_{i-1} - f_i|)$$

- Minimization term is precisely the distance transform DTs_{i-1} of a function considered earlier
 - Which can compute in linear time
- But linear model not robust
 - Can extend to truncated linear

Truncated Distance Cost

- Avoid explicit min_{fi-1} for each f_i
 - Truncated linear model

$$\min_{f_{i-1}} (s_{i-1}(f_{i-1}) + \min(\tau, |f_{i-1}-f_i|))$$

Factor f_i out of minimizations over f_{i-1}

$$\begin{aligned} & min(min_{fi-1}(s_{i-1}(f_{i-1}) + \tau), \\ & & min_{fi-1}(s_{i-1}(f_{i-1}) + |f_{i-1} - f_i|)) \\ & min(min_{fi-1}(s_{i-1}(f_{i-1}) + \tau), \ DT_{si-1}(f_i)) \end{aligned}$$

- Analogous for truncated quadratic model
- Similar for Potts model except no need for distance transform
- O(mn) algorithm for best label sequence

Belief Propagation

- Local message passing scheme in graph
 - Every node in parallel computes messages to send to neighbors
 - Iterate time-steps, t, until convergence
- Various message updating schemes
 - Here consider max product for undirected graph
 - Becomes min sum using costs (neg log probs)
 - Message $m_{i,j,t}$ sent from node i to j at time t

$$m_{i,j,t}(f_j) = \min_{f_i} \left[V(f_i, f_j) + D(y_i, f_i) + \sum_{k \in \mathcal{U}_i \setminus j} m_{k,i,t-1}(f_i) \right]$$

Belief Propagation

- After message passing "converges" at iteration T
 - Each node computes final value based on neighbors

$$b_{i}(f_{i}) = D(y_{i}, f_{i}) + \sum_{k \in \mathcal{R}_{i}} m_{k, i, T}(f_{i})$$

- Select label f_i minimizing b_i for each node
 - Corresponds to maximizing belief (probability)
- For singly-connected chain node generally has two neighbors i-1 and i+1

$$m_{i,i-1,t}(f_{i-1}) = min_{fi} [V(f_i,f_{i-1}) + D(y_i,f_i) + m_{i+1,i,t-1}(f_i)]$$

Analogous for i+1 neighbor

Belief Propagation on a Chain

- Message passed from i to i+1 $m_{i,i+1,t}(f_{i+1}) = min_{fi} [V(f_i,f_{i+1}) + D(y_i,f_i) + m_{i-1,i,t-1}(f_i)]$
- Note relation to Viterbi recursion
- Can show BP converges to same minimum as Viterbi for chain (if unique min)

Min Sum Belief Prop Algorithm

- For chain, two messages per node
 - Node i sends messages m_{i,i} to left m_{i,r} to right
 - Initialize: $m_{i,l,0}=m_{i,r,0}=(0, ..., 0)$ for all nodes i
 - Update messages, for t from 1 to T $m_{i,l,t}(f_l) = \min_{f_i} [V(f_i,f_l) + D(y_i,f_i) + m_{r,i,t-1}(f_i)]$ $m_{i,r,t}(f_r) = \min_{f_i} [V(f_i,f_r) + D(y_i,f_i) + m_{l,i,t-1}(f_i)]$
 - Compute belief at each node

$$b_i(f_i) = D(y_i, f_i) + m_{r,i,T}(f_i) + m_{l,i,T}(f_i)$$

Select best at each node (global optimum)
 argmin_{fi} b_i(f_i)

Relation to HMM

- Hidden Markov model
 - Set of unobservable (hidden) states
 - Sequence of observed values, y_i
 - Transitions between states are Markov
 - Depend only on previous state (or fixed number)
 - State transition matrix (costs or probabilities)
 - Distribution of possible observed values for each state
 - Given y_i determine best state sequence
- Widely used in speech recognition and temporal modeling

Hidden Markov Models

- Two different but equivalent views
 - Sequence of unobservable random variables and observable values
 - 1D MRF with label set
 - Penalties V(f_i,f_j), data costs D(y_i,f_i)

- Hidden non-deterministic state machine
 - Distribution over observable values for each state

Using HMM's

- Three classical problems for HMM
 - Given observation sequence $Y=y_1, ..., y_n$ and HMM $\lambda=(D,V,\pi)$
 - 1. Compute $P(Y|\lambda)$, probability of observing Y given the model
 - Alternatively cost (negative log prob)
 - 2. Determine the best state sequence $x_1, ..., x_n$ given Y
 - Various definitions of best, one is MAP estimate $argmax_{\mathbf{x}} P(X|Y,\lambda)$ or min cost
 - 3. Adjust model $\lambda = (D, V, \pi)$ to maximize $P(Y|\lambda)$
 - Learning problem often solved by EM

HMM Inference or Decoding

- Determine the best state sequence X given observation sequence Y
 - MAP (maximum a posteriori) estimate argmax_X $P(X|Y,\lambda)$
 - Equivalently minimize cost, negative log prob
 - Computed using Viterbi or max-product (minsum) belief propagation
 - Most likely state at each time $P(X_t|Y_1,...,Y_t,\lambda)$
 - Maximize probability of states individually
 - Computed using forward-backward procedure or sum-product belief propagation

1D HMM Example

- Estimate bias of "changing coin" from sequence of observed {H,T} values
 - Use MAP formulation
 - Find lowest cost state sequence
- States correspond to possible bias values, e.g., .10, ..., .90 (large state space)
 - Data costs $-logP(H|x_i)$, $-logP(T|x_i)$
- Used to analyze time varying popularity of item downloads at Internet Archive
 - Each visit results in download or not (H/T)

1D HMM Example

- Truncated linear penalty term V(f_i,f_j)
 - Contrast with smoothing
 - Particularly hard task for 0-1 valued data

Algorithms for Grids (2D)

- Polynomial time for binary label set or for convex cost function V(f_i,f_i)
 - Compute minimum cut in certain graph
 - NP hard in general (reduction from multi-way cut)
- Approximation methods (not global min)
 - Graph cuts and "expansion moves"
 - Loopy belief propagation
 - Many other local minimization techniques
 - Monte Carlo sampling methods, annealing, etc.
 - Consider graph cuts and belief propagation
 - Reasonably fast
 - Can characterize the local minimum

