Regularization and Markov Random Fields (MRF)

CS 664 Spring 2008

Regularization in Low Level Vision

- Low level vision problems concerned with estimating some quantity at each pixel
- Visual motion ($u(x, y), v(x, y)$)
- Stereo disparity d(x,y)
- Restoration of true intensity $b(x, y)$
- Problem under constrained
- Only able to observe noisy values at each pixel
- Sometimes single pixel not enough to estimate value
- Need to apply other constraints

Smooth but with discontinuities

First image

Second image

Small discontinuities important

First image

Second image

Smoothness Constraints

- Estimated values should change slowly as function of (x, y)
- Except "boundaries" which are relatively rare
- Minimize an error function

$$
E(r(x, y))=V(r(x, y))+\lambda D_{1}(r(x, y))
$$

- For r being estimated at each x, y location
- V penalizes change in r in local neighborhood
- D_{1} penalizes r disagreeing with image data
- λ controls tradeoff of these smoothness and data terms
- Can itself be parameterized by x,y

Regularization for Visual Motion

- Use quadratic error function
- Smoothness term

$$
v(u(x, y), v(x, y))=\sum \sum u_{x}^{2}+u_{y}^{2}+v_{x}^{2}+v_{y}^{2}
$$

- Where subscripts denote partials $u_{x}=\partial u(x, y) / \partial x$, etc.
- Data term

$$
D_{1}(u(x, y), v(x, y))=\sum \sum\left(I_{x} \cdot u+I_{y} \cdot v+I_{t}\right)^{2}
$$

- Only for smoothly changing motion fields
- No discontinuity boundaries
- Does not work well in practice

Problems With Regularization

- Computational difficulty
- Extremely high dimensional minimization problem
- $2 m n$ dimensional space for $m \times n$ image and motion estimation
- If k motion values, $k^{2 m n}$ possible solutions
- Can solve with gradient descent methods
- Smoothness too strong a model
- Can in principle estimate variable smoothness penalty $\lambda_{1}(x, y)$
- More difficult computation
- Need to relate λ_{1} to $\mathrm{V}, \mathrm{D}_{1}$

Regularization With Discontinuities

- Line process
- Estimate binary value representing when discontinuity between neighboring pixels
- Pixels as sites $s \in S$ (vertices in graph)
- Neighborhood π_{s} sites connected to s by edges
- Grid graph 4-connected or 8-connected
- Write smoothness term analogously as

$$
\sum_{s \in s} \sum_{n \in \eta s}\left(u_{s}-u_{n}\right)^{2}+\left(v_{s}-v_{n}\right)^{2}
$$

Line Process

- Variable smoothness penalty depending on binary estimate of discontinuity $\mathrm{I}_{\mathrm{s}, \mathrm{n}}$

$$
\begin{gathered}
\sum_{s \in s} \sum_{n \in z_{s}}\left[\alpha_{s}\left(1-l_{s, n}\right)\left(\left(u_{s}-u_{n}\right)^{2}+\left(v_{s}-v_{n}\right)^{2}\right)\right. \\
\left.+\beta_{s} l_{s, n}\right]
\end{gathered}
$$

- With α_{s}, β_{s} constants controlling smoothness
- Minimization problem no longer as simple
- Graduated non-convexity (GNC)

Robust Regularization

- Both smoothness and data constraints can be violated
- Result not smooth at certain locations
- Addressed by line process
- Data values bad at certain locations
- E.g., specularities, occlusions
- Not addressed by line process
- Unified view: model both smoothness and data terms using robust error measures
- Replace quadratic error which is sensitive to outliers

Robust Formulation

- Simply replace quadratic terms with robust error function ρ

$$
\begin{aligned}
& \sum_{s \in S}\left[\rho_{1}\left(I_{x} \cdot u_{s}+I_{y} \cdot v_{s}+I_{t}\right)\right. \\
& \left.\quad+\lambda \sum_{n \in Z S}\left[\rho_{2}\left(u_{s}-u_{n}\right)+\rho_{2}\left(v_{s}-v_{n}\right)\right]\right]
\end{aligned}
$$

- In practice often estimate first term over small region around s
- Some robust error functions
- Truncated linear: $\rho_{\tau}(x)=\min (\tau, x)$
- Truncated quadratic: $\rho_{\tau}(x)=\min \left(\tau, x^{2}\right)$
- Lorentzian: $\rho_{\sigma}(x)=\log \left(1+1 / 2(x / \sigma)^{2}\right)$

I nfluence Functions

- Useful to think of error functions in terms of degree to which a given value affects the result

Relation to Line Process

- Can think of robust error function as performing "outlier rejection"
- Influence (near) zero for outliers but non-zero for inliers
- Line process makes a binary inlier/outlier decision
- Based on external process or on degree of difference between estimated values
- Both robust estimation and line process formulations local characterizations

Relationship to MRF Models

- Markov random field (MRF)
- Collection of random variables
- Graph structure models spatial relations with local neighborhoods (Markov property)
- Explicit dependencies among pixels
- Widely used in low-level vision problems
- Stereo, motion, segmentation
- Seek best label for each pixel
- Bayesian model, e.g., MAP estimation
- Common to consider corresponding energy minimization problems

Markov Random Fields in Vision

- Graph G=(V,E)
- Assume vertices indexed 1, .., n
- Observable variables $\mathrm{y}=\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$
- Unobservable variables $x=\left\{x_{1}, \ldots, x_{n}\right\}$
- Edges connect each x_{i} to certain neighbors $\pi_{x i}$
- Edges connect each x_{i} to y_{i}
- Consider cliques of size 2
- Recall clique is fully connected sub-graph

- 4-connected grid or 2-connected chain

MRF Models in Vision

- Prior $P(x)$ factors into product of functions over cliques
- Due to Hammersly-Clifford Theorem

$$
P(x)=\Pi_{C} \Psi_{C}\left(x_{c}\right)
$$

- Ψ_{C} termed clique potential, of form $\exp \left(-\mathrm{V}_{\mathrm{C}}\right)$
- For clique size 2 (cliques correspond to edges)

$$
\mathrm{P}(\mathrm{x})=\prod_{\mathrm{i}, \mathrm{j}} \Psi_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)
$$

- Probability of hidden and observed values

$$
\mathrm{P}(\mathrm{x}, \mathrm{y})=\prod_{\mathrm{i}, \mathrm{j}} \Psi_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right) \prod_{\mathrm{i}} \Psi_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)
$$

- Given particular clique energy V_{ij} and observed y, seek values of x maximizing $P(x, y)$

Markov Property

- Neighborhoods completely characterize conditional distributions
- Solving a global problem with local relationships
- Probability of values over subset S given remainder same as for that subset given its neighborhood
- Given $\mathrm{S} \subset \mathrm{V}$ and $\mathrm{S}^{\mathrm{c}}=\mathrm{V}$-S

$$
\mathrm{P}\left(\mathrm{x}_{\mathrm{S}} \mid \mathrm{x}_{\mathrm{Sc}}\right)=\mathrm{P}\left(\mathrm{x}_{\mathrm{S}} \mid n_{\mathrm{xS}}\right)
$$

- Conceptually and computationally useful

MRF Estimation

- Various ways of maximizing probability
- Common to use MAP estimate $\operatorname{argmax}_{\mathrm{x}} \mathrm{P}(\mathrm{x} \mid \mathrm{y})$

$$
\operatorname{argmax}_{x} \Pi_{\mathrm{i}, \mathrm{j}} \Psi_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right) \Pi_{\mathrm{i}} \Phi_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)
$$

- Probabilities hard to compute with
- Use logs (or often negative log) $\operatorname{argmin}_{x} \sum_{\mathrm{i}, \mathrm{j}} \mathrm{V}_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)+\sum_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$
- In energy function formulation often think of assigning best label $f_{i} \in \mathscr{L}$ to each node v_{i} given data y_{i}
$\operatorname{argmin}_{f}\left[\Sigma_{\mathrm{i}} \mathrm{D}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}\right)+\sum_{\mathrm{i}, \mathrm{j}} \mathrm{V}\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)\right]$

Similar to Regularization

- Summation of data and smoothness terms $\operatorname{argmin}_{f}\left[\sum_{i} D\left(y_{i}, f_{i}\right)+\sum_{i, j} V\left(f_{i}, f_{j}\right)\right]$ $\operatorname{argmin}_{f} \sum_{s \in s}\left[\rho_{1}\left(d_{s}, f_{s}\right)+\lambda \sum_{n \in \imath s}\left[\rho_{2}\left(f_{s}-f_{n}\right)\right]\right]$
- Data term D vs. robust data function ρ_{1}
- Clique term V vs. robust smoothness function ρ_{2}
- Over cliques rather than neighbors of each site
- Nearly same definitions on four connected grid
- Probabilistic formulation particularly helpful for learning problems
- Parameters of D, V or even form of D, V

Common Clique Energies

- Enforce "smoothness", robust to outliers
- Potts model
- Same or outlier (based on label identity)

$$
\mathrm{V}_{\tau}\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)=0 \text { when } \mathrm{f}_{\mathrm{i}}=\mathrm{f}_{\mathrm{j}}, \tau \text { otherwise }
$$

- Truncated linear model
- Small linear change or outlier (label difference)

$$
\mathrm{V}_{\sigma, \tau}\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)=\min \left(\tau, \sigma\left|\mathrm{f}_{\mathrm{i}}-\mathrm{f}_{\mathrm{j}}\right|\right)
$$

- Truncated quadratic model
- Small quadratic change or outlier (label difference)

$$
\mathrm{V}_{\sigma, \tau}\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)=\min \left(\tau, \sigma\left|\mathrm{f}_{\mathrm{i}}-\mathrm{f}_{\mathrm{j}}\right|^{2}\right)
$$

1D Graphs (Chains)

- Simpler than 2D for illustration purposes
- Fast polynomial time algorithms
- Problem definition
- Sequence of nodes $V=(1, \ldots, n)$
- Edges between adjacent pairs (i, i+1)
- Observed value y_{i} at each node
- Seek labeling $f=\left(f_{1}, \ldots, f_{n}\right), f_{i} \in \mathcal{L}$, minimizing

$$
\sum_{i}\left[D\left(y_{i}, f_{i}\right)+V\left(f_{i}, f_{i+1}\right)\right] \quad\left(\text { note } V\left(f_{n}, f_{n+1}\right)=0\right)
$$

- Contrast with smoothing by convolution $\begin{array}{llllllllllll}d_{i} & 1 & 3 & 2 & 1 & 3 & 12 & 10 & 11 & 10 & 12 \\ f_{i} & 2 & 2 & 2 & 2 & 2 & 11 & 0 & 0 & 0 & 0\end{array}$

Viterbi Recurrence

- Don't need explicit min over $f=\left(f_{1}, \ldots, f_{n}\right)$
- Instead recursively compute

$$
s_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+\min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+V\left(f_{i-1}, f_{i}\right)\right)
$$

- Note $s_{i}\left(f_{i}\right)$ for given i encodes a lowest cost label sequence ending in state f_{i} at that node

Viterbi Algorithm

- Find a lowest cost assignment f_{1}, \ldots, f_{n}
- Initialize
$s_{1}\left(f_{1}\right)=D\left(y_{1}, f_{1}\right)+\pi$, with π cost of f_{1} if not uniform
- Recurse

$$
\begin{aligned}
& s_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+\min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+V\left(f_{i-1}, f_{i}\right)\right) \\
& b_{i}\left(f_{i}\right)=\operatorname{argmin}_{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+V\left(f_{i-1}, f_{i}\right)\right)
\end{aligned}
$$

- Terminate
$\min _{f n} s_{n}\left(f_{n}\right)$, cost of cheapest path (neg log prob) $\mathrm{f}_{\mathrm{n}}{ }^{*}=\operatorname{argmin}_{\mathrm{fn}} \mathrm{S}_{\mathrm{n}}\left(\mathrm{f}_{\mathrm{n}}\right)$
- Backtrack

$$
f_{n-1}{ }^{*}=b_{n}\left(f_{n}\right)
$$

Viterbi Algorithm

- For sequence of n data elements, with m possible labels per element
- Compute $s_{i}\left(f_{i}\right)$ for each element using recurrence
- O(nm^{2}) time
- For final node compute f_{n} minimizing $s_{n}\left(f_{n}\right)$
- Trace back from node back to first node
- Minimizers computed when computing costs on "forward" pass
- First step dominates running time
- Avoid searching exponentially many paths

Large Label Sets Problematic

- Viterbi slow with large number of labels
- $O\left(m^{2}\right)$ term in calculating $\mathrm{s}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}\right)$
- For our problems V usually has a special form so can compute in linear time
- Consider linear clique energy $s_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+\min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+\left|f_{i-1}-f_{i}\right|\right)$
- Minimization term is precisely the distance transform DTs $\mathrm{i}_{\mathrm{i}-1}$ of a function considered earlier
- Which can compute in linear time
- But linear model not robust
- Can extend to truncated linear

Truncated Distance Cost

- Avoid explicit min $_{\text {fi-1 }}$ for each f_{i}
- Truncated linear model

$$
\min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+\min \left(\tau,\left|f_{i-1}-f_{i}\right|\right)\right)
$$

- Factor f_{i} out of minimizations over f_{i-1}

$$
\begin{aligned}
& \min \left(\min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+\tau\right),\right. \\
& \left.\quad \min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+\left|f_{i-1}-f_{i}\right|\right)\right) \\
& \min \left(\min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+\tau\right), D T_{s i-1}\left(f_{i}\right)\right)
\end{aligned}
$$

- Analogous for truncated quadratic model
- Similar for Potts model except no need for distance transform
- O(mn) algorithm for best label sequence

Belief Propagation

- Local message passing scheme in graph
- Every node in parallel computes messages to send to neighbors
- Iterate time-steps, t , until convergence
- Various message updating schemes
- Here consider max product for undirected graph
- Becomes min sum using costs (neg log probs)
- Message $m_{i, j, t}$ sent from node i to j at time t

$$
\begin{aligned}
m_{\mathrm{i}, \mathrm{j}, \mathrm{t}}\left(\mathrm{f}_{\mathrm{j}}\right)=\min _{\mathrm{fi}}[& V\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)+\mathrm{D}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}\right) \\
& \left.+\sum_{\mathrm{k} \in \boldsymbol{z a i j}} \mathrm{~m}_{\mathrm{k}, \mathrm{i},-1}\left(\mathrm{f}_{\mathrm{i}}\right)\right]
\end{aligned}
$$

Belief Propagation

- After message passing "converges" at iteration T
- Each node computes final value based on neighbors

$$
b_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+\sum_{k \in z i} m_{k, i, T}\left(f_{i}\right)
$$

- Select label f_{i} minimizing b_{i} for each node
- Corresponds to maximizing belief (probability)
- For singly-connected chain node generally has two neighbors $\mathrm{i}-1$ and $\mathrm{i}+1$

$$
m_{i, i-1, t}\left(f_{i-1}\right)=\min _{f i}\left[V\left(f_{i}, f_{i-1}\right)+D\left(y_{i}, f_{i}\right)+m_{i+1, i, t-1}\left(f_{i}\right)\right]
$$

- Analogous for $i+1$ neighbor

Belief Propagation on a Chain

- Message passed from ito i+1

$$
m_{i, i+1, t}\left(f_{i+1}\right)=\min _{f i}\left[V\left(f_{i}, f_{i+1}\right)+D\left(y_{i}, f_{i}\right)+m_{i-1, i, t-1}\left(f_{i}\right)\right]
$$

- Note relation to Viterbi recursion
- Can show BP converges to same minimum as Viterbi for chain (if unique min)

Min Sum Belief Prop Algorithm

- For chain, two messages per node
- Node i sends messages $m_{i, 1}$ to left $m_{i, r}$ to right
- I nitialize: $m_{i, 1,0}=m_{i, r, 0}=(0, \ldots, 0)$ for all nodes i
- Update messages, for t from 1 to T

$$
\begin{aligned}
& m_{i, l, t}\left(f_{i}\right)=\min _{f i}\left[V\left(f_{i}, f_{i}\right)+D\left(y_{i}, f_{i}\right)+m_{r, i, t-1}\left(f_{i}\right)\right] \\
& m_{i, r, t}\left(f_{r}\right)=\min _{f i}\left[V\left(f_{i}, f_{r}\right)+D\left(y_{i}, f_{i}\right)+m_{l, i, t-1}\left(f_{i}\right)\right]
\end{aligned}
$$

- Compute belief at each node

$$
b_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+m_{r, i, T}\left(f_{i}\right)+m_{l, i, T}\left(f_{i}\right)
$$

- Select best at each node (global optimum) $\operatorname{argmin}_{\mathrm{fi}} \mathrm{b}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}\right)$

Relation to HMM

- Hidden Markov model
- Set of unobservable (hidden) states
- Sequence of observed values, y_{i}
- Transitions between states are Markov
- Depend only on previous state (or fixed number)
- State transition matrix (costs or probabilities)
- Distribution of possible observed values for each state
- Given y_{i} determine best state sequence
- Widely used in speech recognition and temporal modeling

Hidden Markov Models

- Two different but equivalent views
- Sequence of unobservable random variables and observable values
- 1D MRF with label set
- Penalties $V\left(f_{i}, f_{j}\right)$, data costs $D\left(y_{i}, f_{i}\right)$

- Hidden non-deterministic state machine
- Distribution over observable values for each state

D

Using HMM's

- Three classical problems for HMM
- Given observation sequence $Y=y_{1}, \ldots, y_{n}$ and HMM $\lambda=(D, V, \pi)$

1. Compute $P(Y \mid \lambda)$, probability of observing Y given the model

- Alternatively cost (negative log prob)

2. Determine the best state sequence x_{1}, \ldots, x_{n} given Y

- Various definitions of best, one is MAP estimate $\operatorname{argmax}_{\mathbf{x}} \mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \lambda)$ or min cost

3. Adjust model $\lambda=(\mathrm{D}, \mathrm{V}, \pi)$ to maximize $\mathrm{P}(\mathrm{Y} \mid \lambda)$
_ Learning problem often solved by EM

HMM I nference or Decoding

- Determine the best state sequence X given observation sequence Y
- MAP (maximum a posteriori) estimate $\operatorname{argmax}_{X} \mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \lambda)$
- Equivalently minimize cost, negative log prob
- Computed using Viterbi or max-product (minsum) belief propagation
- Most likely state at each time $P\left(X_{t} \mid Y_{1}, \ldots, Y_{t}, \lambda\right)$
- Maximize probability of states individually
- Computed using forward-backward procedure or sum-product belief propagation

1D HMM Example

- Estimate bias of "changing coin" from sequence of observed $\{\mathrm{H}, \mathrm{T}\}$ values
- Use MAP formulation
- Find lowest cost state sequence
- States correspond to possible bias values, e.g., .10, ..., 90 (large state space)
- Data costs $-\log \mathrm{P}\left(\mathrm{H} \mid \mathrm{x}_{\mathbf{i}}\right),-\log \mathrm{P}\left(\mathrm{T} \mid \mathrm{x}_{\mathbf{i}}\right)$
- Used to analyze time varying popularity of item downloads at Internet Archive
- Each visit results in download or not (H/T)

1D HMM Example

- Truncated linear penalty term $\mathrm{V}\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)$
- Contrast with smoothing
- Particularly hard task for 0-1 valued data

Algorithms for Grids (2D)

- Polynomial time for binary label set or for convex cost function $V\left(f_{i}, f_{j}\right)$
- Compute minimum cut in certain graph
- NP hard in general (reduction from multi-way cut)
- Approximation methods (not global min)
- Graph cuts and "expansion moves"
- Loopy belief propagation
- Many other local minimization techniques
- Monte Carlo sampling methods, annealing, etc.
- Consider graph cuts and belief propagation
- Reasonably fast
- Can characterize the local minimum

