
Regularization and
Markov Random Fields (MRF)

CS 664 Spring 2008

2

Regularization in Low Level Vision

Low level vision problems concerned with
estimating some quantity at each pixel
– Visual motion (u(x,y),v(x,y))
– Stereo disparity d(x,y)
– Restoration of true intensity b(x,y)

Problem under constrained
– Only able to observe noisy values at each pixel
– Sometimes single pixel not enough to estimate

value

Need to apply other constraints

3

Smooth but with discontinuities

4

Small discontinuities important

5

Smoothness Constraints

Estimated values should change slowly as
function of (x,y)
– Except “boundaries” which are relatively rare

Minimize an error function
E(r(x,y)) = V(r(x,y)) + λ DI(r(x,y))

– For r being estimated at each x,y location
– V penalizes change in r in local neighborhood
– DI penalizes r disagreeing with image data
– λ controls tradeoff of these smoothness and

data terms
• Can itself be parameterized by x,y

6

Regularization for Visual Motion

Use quadratic error function
Smoothness term

V (u(x,y),v(x,y)) = ∑ ∑ ux
2 + uy

2 + vx
2 + vy

2

– Where subscripts denote partials
ux=∂u(x,y)/∂x, etc.

Data term
DI(u(x,y),v(x,y)) = ∑ ∑ (Ix·u + Iy·v + It)2

Only for smoothly changing motion fields
– No discontinuity boundaries
– Does not work well in practice

7

Problems With Regularization

Computational difficulty
– Extremely high dimensional minimization

problem
• 2mn dimensional space for m×n image and

motion estimation
• If k motion values, k2mn possible solutions
• Can solve with gradient descent methods

Smoothness too strong a model
– Can in principle estimate variable smoothness

penalty λI(x,y)
• More difficult computation
• Need to relate λI to V, DI

8

Regularization With
Discontinuities

Line process
– Estimate binary value representing when

discontinuity between neighboring pixels

Pixels as sites s∈S (vertices in graph)
– Neighborhood Ns sites connected to s by edges

• Grid graph 4-connected or 8-connected

– Write smoothness term analogously as
∑s∈S ∑n∈Ns (us-un)2 + (vs-vn)2

s

n

9

Line Process

Variable smoothness penalty depending
on binary estimate of discontinuity ls,n

∑s∈S ∑n∈Ns [αs(1-ls,n)((us-un)2 + (vs-vn)2)
+ βsls,n]

– With αs, βs constants controlling smoothness

Minimization problem no longer as simple
– Graduated non-convexity (GNC)

Line process ls,n

s

n

10

Robust Regularization

Both smoothness and data constraints can
be violated
– Result not smooth at certain locations

• Addressed by line process

– Data values bad at certain locations
• E.g., specularities, occlusions
• Not addressed by line process

Unified view: model both smoothness and
data terms using robust error measures
– Replace quadratic error which is sensitive to

outliers

11

Robust Formulation

Simply replace quadratic terms with
robust error function ρ

∑s∈S [ρ1(Ix·us + Iy·vs + It)
+ λ ∑n∈Ns [ρ2(us-un) + ρ2(vs-vn)]]

– In practice often estimate first term over small
region around s

Some robust error functions
– Truncated linear: ρτ(x) = min(τ,x)
– Truncated quadratic: ρτ(x) = min(τ,x2)
– Lorentzian: ρσ(x) = log(1 + ½(x/σ)2)

12

Influence Functions

Useful to think of error functions in terms
of degree to which a given value affects
the result

13

Relation to Line Process

Can think of robust error function as
performing “outlier rejection”
– Influence (near) zero for outliers but non-zero

for inliers

Line process makes a binary inlier/outlier
decision
– Based on external process or on degree of

difference between estimated values

Both robust estimation and line process
formulations local characterizations

14

Relationship to MRF Models

Markov random field (MRF)
– Collection of random variables
– Graph structure models spatial relations with

local neighborhoods (Markov property)
• Explicit dependencies among pixels

Widely used in low-level vision problems
– Stereo, motion, segmentation

Seek best label for each pixel
– Bayesian model, e.g., MAP estimation

Common to consider corresponding
energy minimization problems

15

Markov Random Fields in Vision

Graph G=(V,E)
– Assume vertices indexed 1, …, n
– Observable variables y={y1, …, yn}
– Unobservable variables x={x1, …, xn}
– Edges connect each xi to certain neighbors Nxi

– Edges connect each xi to yi

– Consider cliques of size 2
• Recall clique is fully

connected sub-graph
• 4-connected grid or

2-connected chain

16

MRF Models in Vision

Prior P(x) factors into product of functions
over cliques
– Due to Hammersly-Clifford Theorem

P(x) = ∏C ΨC(xc)
• ΨC termed clique potential, of form exp(-VC)

– For clique size 2 (cliques correspond to edges)
P(x) = ∏i,j Ψij(xi,xj)

Probability of hidden and observed values
P(x,y) = ∏i,j Ψij(xi,xj) ∏i Ψii(xi,yi)

– Given particular clique energy Vij and observed
y, seek values of x maximizing P(x,y)

17

Markov Property

Neighborhoods completely characterize
conditional distributions
– Solving a global problem with local

relationships

Probability of values over subset S given
remainder same as for that subset given
its neighborhood
– Given S⊂V and Sc=V-S

P(xS | xSc) = P (xS | Nxs)

Conceptually and computationally useful

18

MRF Estimation

Various ways of maximizing probability
– Common to use MAP estimate argmaxx P(x|y)

argmaxx ∏i,j Ψij(xi,xj) ∏i Φi(xi,yi)

Probabilities hard to compute with
– Use logs (or often negative log)

argminx ∑i,j Vij(xi,xj) + ∑i Di(xi,yi)

In energy function formulation often think
of assigning best label fi∈L to each node vi

given data yi

argminf [∑i D(yi,fi) + ∑i,j V(fi,fj)]

19

Similar to Regularization

Summation of data and smoothness terms
argminf [∑i D(yi,fi) + ∑i,jV(fi,fj)]

argminf ∑s∈S [ρ1(ds,fs)+ λ ∑n∈Ns [ρ2(fs-fn)]]

– Data term D vs. robust data function ρ1

– Clique term V vs. robust smoothness function ρ2

• Over cliques rather than neighbors of each site

• Nearly same definitions on four connected grid

Probabilistic formulation particularly helpful
for learning problems
– Parameters of D, V or even form of D,V

20

Common Clique Energies

Enforce “smoothness”, robust to outliers
– Potts model

• Same or outlier (based on label identity)

Vτ(fi,fj) = 0 when fi=fj, τ otherwise

– Truncated linear model
• Small linear change or outlier (label difference)

Vσ,τ(fi,fj) = min(τ, σ|fi-fj|)

– Truncated quadratic model
• Small quadratic change or outlier (label

difference)

Vσ,τ(fi,fj) = min(τ, σ|fi-fj|2)

21

1D Graphs (Chains)

Simpler than 2D for illustration purposes
Fast polynomial time algorithms
Problem definition
– Sequence of nodes V=(1, …, n)
– Edges between adjacent pairs (i, i+1)
– Observed value yi at each node
– Seek labeling f=(f1, …, fn), fi∈L, minimizing

∑i [D(yi,fi) + V(fi,fi+1)] (note V(fn,fn+1)=0)

Contrast with smoothing by convolution

2 2 2 2 2 11 11 11 11 11

1 3 2 1 3 12 10 11 10 12di

fi

22

Viterbi Recurrence

Don’t need explicit min over f=(f1, …, fn)
– Instead recursively compute

si(fi) = D(yi,fi) + minfi-1 (si-1(fi-1) + V(fi-1,fi))

– Note si(fi) for given i encodes a lowest cost label
sequence ending in state fi at that node

Si-1(fi-1)

Possible labels,
values of fi

D(yi,fi)

V(fi-1,fi)

si(fi)

23

Viterbi Algorithm

Find a lowest cost assignment f1, …, fn
Initialize

s1(f1) = D(y1,f1)+π, with π cost of f1 if not uniform

Recurse
si(fi) = D(yi,fi) + minfi-1 (si-1(fi-1) + V(fi-1,fi))
bi(fi) = argminfi-1 (si-1(fi-1) + V(fi-1,fi))

Terminate
minfn sn(fn) , cost of cheapest path (neg log prob)
fn*= argminfn sn(fn)

Backtrack
fn-1

*= bn(fn)

24

Viterbi Algorithm

For sequence of n data elements, with m
possible labels per element
– Compute si(fi) for each element using

recurrence
• O(nm2) time

– For final node compute fn minimizing sn(fn)
– Trace back from node back to first node

• Minimizers computed when computing costs on
“forward” pass

First step dominates running time
Avoid searching exponentially many paths

25

Large Label Sets Problematic

Viterbi slow with large number of labels
– O(m2) term in calculating si(fi)

For our problems V usually has a special
form so can compute in linear time
– Consider linear clique energy

si(fi) = D(yi,fi) + minfi-1 (si-1(fi-1) + |fi-1-fi|)

– Minimization term is precisely the distance
transform DTsi-1 of a function considered earlier
• Which can compute in linear time

– But linear model not robust
• Can extend to truncated linear

26

Truncated Distance Cost

Avoid explicit minfi-1 for each fi
– Truncated linear model

minfi-1 (si-1(fi-1) + min(τ,|fi-1-fi|))
– Factor fi out of minimizations over fi-1

min(minfi-1(si-1(fi-1)+τ),
minfi-1(si-1(fi-1)+|fi-1-fi|))

min(minfi-1(si-1(fi-1)+τ), DTsi-1(fi))

Analogous for truncated quadratic model
Similar for Potts model except no need for
distance transform
O(mn) algorithm for best label sequence

27

Belief Propagation

Local message passing scheme in graph
– Every node in parallel computes messages to

send to neighbors
• Iterate time-steps, t, until convergence

Various message updating schemes
– Here consider max product for undirected

graph
• Becomes min sum using costs (neg log probs)

– Message mi,j,t sent from node i to j at time t

mi,j,t(fj) = minfi [V(fi,fj)+D(yi,fi)

+ ∑k∈Ni\j mk,i,t-1(fi)]

28

Belief Propagation

After message passing “converges” at
iteration T
– Each node computes final value based on

neighbors
bi(fi)=D(yi,fi)+∑k∈Nimk,i,T(fi)

– Select label fi minimizing bi for each node
• Corresponds to maximizing belief (probability)

For singly-connected chain node generally
has two neighbors i-1 and i+1

mi,i-1,t(fi-1) = minfi [V(fi,fi-1)+D(yi,fi)+mi+1,i,t-1(fi)]

– Analogous for i+1 neighbor

29

Belief Propagation on a Chain

Message passed from i to i+1
mi,i+1,t(fi+1) = minfi [V(fi,fi+1)+D(yi,fi)+mi-1,i,t-1(fi)]

Note relation to Viterbi recursion
Can show BP converges to same minimum
as Viterbi for chain (if unique min)

mi-1,i,t-1(fi)

Possible labels,
values of fi

D(yi,fi)

V(fi,fi+1)

mi,i+1,t-1(fi+1)

30

Min Sum Belief Prop Algorithm

For chain, two messages per node
– Node i sends messages mi,l to left mi,r to right

– Initialize: mi,l,0=mi,r,0=(0, …, 0) for all nodes i

– Update messages, for t from 1 to T

mi,l,t(fl) = minfi [V(fi,fl)+D(yi,fi)+mr,i,t-1(fi)]

mi,r,t(fr) = minfi [V(fi,fr)+D(yi,fi)+ml,i,t-1(fi)]

– Compute belief at each node

bi(fi)=D(yi,fi)+mr,i,T(fi)+ml,i,T(fi)

– Select best at each node (global optimum)

argminfi bi(fi)

31

Relation to HMM

Hidden Markov model
– Set of unobservable (hidden) states
– Sequence of observed values, yi

– Transitions between states are Markov
• Depend only on previous state (or fixed number)
• State transition matrix (costs or probabilities)

– Distribution of possible observed values for
each state

– Given yi determine best state sequence

Widely used in speech recognition and
temporal modeling

32

Hidden Markov Models

Two different but equivalent views
– Sequence of unobservable random variables and

observable values
• 1D MRF with label set
• Penalties V(fi,fj), data costs D(yi,fi)

– Hidden non-deterministic state machine
• Distribution over observable values for each state

A BA

B

C

D E

V D

33

Using HMM’s

Three classical problems for HMM
– Given observation sequence Y=y1, …, yn and

HMM λ=(D,V,π)
1. Compute P(Y|λ), probability of observing Y

given the model
– Alternatively cost (negative log prob)

2. Determine the best state sequence x1, …, xn
given Y
– Various definitions of best, one is MAP estimate

argmaxX P(X|Y,λ) or min cost

3. Adjust model λ=(D,V,π) to maximize P(Y|λ)
– Learning problem often solved by EM

34

HMM Inference or Decoding

Determine the best state sequence X
given observation sequence Y
– MAP (maximum a posteriori) estimate

argmaxX P(X|Y,λ)
• Equivalently minimize cost, negative log prob
• Computed using Viterbi or max-product (min-

sum) belief propagation

– Most likely state at each time P(Xt|Y1,…,Yt,λ)
• Maximize probability of states individually
• Computed using forward-backward procedure or

sum-product belief propagation

35

1D HMM Example

Estimate bias of “changing coin” from
sequence of observed {H,T} values
– Use MAP formulation

• Find lowest cost state sequence

States correspond to possible bias values,
e.g., .10, …, .90 (large state space)
– Data costs –logP(H|xi), -logP(T|xi)

Used to analyze time varying popularity of
item downloads at Internet Archive
– Each visit results in download or not (H/T)

36

1D HMM Example

Truncated linear penalty term V(fi,fj)
– Contrast with smoothing
– Particularly hard task for 0-1 valued data

37

Algorithms for Grids (2D)

Polynomial time for binary label set or for
convex cost function V(fi,fj)
– Compute minimum cut in certain graph
– NP hard in general (reduction from multi-way cut)

Approximation methods (not global min)
– Graph cuts and “expansion moves”
– Loopy belief propagation
– Many other local minimization techniques

• Monte Carlo sampling methods, annealing, etc.
– Consider graph cuts and belief propagation

• Reasonably fast
• Can characterize the local minimum

