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Regularization in Low Level Vision

= Low level vision problems concerned with
estimating some quantity at each pixel

— Visual motion (u(x,y),v(x,y))

— Stereo disparity d(Xx,y)

— Restoration of true intensity b(x,y)
= Problem under constrained

— Only able to observe noisy values at each pixel

— Sometimes single pixel not enough to estimate
value

= Need to apply other constraints
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Smooth but with discontinuities
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Small discontinuities important
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Smoothness Constraints

= Estimated values should change slowly as
function of (X,y)

— Except “boundaries” which are relatively rare
= Minimize an error function
E(r(x,y)) = V(r(x,y)) + A Di(r(x,y))
— For r being estimated at each X,y location
— V penalizes change in r in local neighborhood
— D, penalizes r disagreeing with image data

— A controls tradeoff of these smoothness and
data terms

e Can itself be parameterized by X,y
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Regularization for Visual Motion

= Use gquadratic error function

= Smoothness term
V (U(X,y),v(X,y)) = 2 2 U2 + U2 + V2 + Vv, 2

— Where subscripts denote partials
u,—ou(x,y)/ox, etc.

= Data term
D,(u(x,y),v(x,y)) = 2 2 (L,-u + I-v + 1)?
= Only for smoothly changing motion fields

— No discontinuity boundaries
— Does not work well in practice
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Problems With Regularization

= Computational difficulty
— Extremely high dimensional minimization
problem

 2mn dimensional space for mxn image and
motion estimation

e If k motion values, k?™" possible solutions
e Can solve with gradient descent methods

= Smoothness too strong a model

— Can In principle estimate variable smoothness
penalty A,(X,y)
e More difficult computation
- Need to relate A, to V, D,
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Regularization With
Discontinuities

= Line process

— Estimate binary value representing when
discontinuity between neighboring pixels

» Pixels as sites ses (vertices in graph)

— Neighborhood 7, sites connected to s by edges
e Grid graph 4-connected or 8-connected

— Write smoothness term analogously as
Zses Z:ne%s (us_un)2 + (VS_Vn)2
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LIine Process

= Variable smoothness penalty depending
on binary estimate of discontinuity I

2ses 2nens [0s(1-1s n) ((Us-UR)? + (V-v)?)
+ Bsls nl
— With a4, B constants controlling smoothness

= Minimization problem no longer as simple
— Graduated non-convexity (GNC)

S
E Line process I
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Robust Regularization

= Both smoothness and data constraints can
be violated
— Result not smooth at certain locations
e Addressed by line process
— Data values bad at certain locations
e E.g., specularities, occlusions
e Not addressed by line process

= Unified view: model both smoothness and
data terms using robust error measures

— Replace quadratic error which is sensitive to
outliers
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Robust Formulation

= Simply replace quadratic terms with
robust error function p

Zses [pl(lx'us + Iy'VS + It)
+ A Zne%S [pz(us_un) + pZ(Vs_Vn)]]

— In practice often estimate first term over small
region around s

= Some robust error functions
— Truncated linear: p_(x) = min(t,X)
— Truncated quadratic: p.(x) = min(t,x?)
— Lorentzian: p,(x) = log(1 + ¥2(x/c)?)
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Influence Functions

= Useful to think of error functions in terms
of degree to which a given value affects
the reSUIt .I'-':\:I=.:\:2 ﬂ'-l:tl_h=zc
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Relation to Line Process

= Can think of robust error function as
performing “outlier rejection”

— Influence (near) zero for outliers but non-zero
for inliers
* Line process makes a binary inlier/outlier
decision

— Based on external process or on degree of
difference between estimated values

= Both robust estimation and line process
formulations local characterizations
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Relationship to MRF Models

= Markov random field (MRF)

— Collection of random variables

— Graph structure models spatial relations with
local neighborhoods (Markov property)

e Explicit dependencies among pixels
= Widely used In low-level vision problems
— Stereo, motion, segmentation

= Seek best label for each pixel
— Bayesian model, e.g., MAP estimation

= Common to consider corresponding
energy minimization problems
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Markov Random Fields in Vision

» Graph G=(V,E)

— Assume vertices indexed 1, ..., n
— Observable variables y={y, ..., Y}
— Unobservable variables x={x, ..., X}

— Edges connect each x; to certain neighbors 7,

— Edges connect each Xx; to y;

— Consider cliques of size 2

e Recall clique is fully
connected sub-graph

e 4-connected grid or

2-connected chain .\O‘\O.\O .\O.\O.\O
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MRF Models in Vision

= Prior P(x) factors into product of functions
over cligues

— Due to Hammersly-Clifford Theorem

P(X) = llc ¥c(Xc)
« Y. termed clique potential, of form exp(-V,)

— For clique size 2 (cliques correspond to edges)

P(x) = 11Ii; Wi(xi. ;)
= Probability of hidden and observed values
P(X,y) = 11;; Wi, x;) 11 WX,y
— Given particular clique energy V;; and observed

, seek values of x maximizing P(X,y)
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Markov Property

= Neighborhoods completely characterize
conditional distributions

— Solving a global problem with local
relationships

* Probability of values over subset S given
remainder same as for that subset given
Its neighborhood

— Given ScV and S¢=V-S
P(XS I XSC) =P (XS I %xs)
= Conceptually and computationally useful
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MRF Estimation

= Various ways of maximizing probability
— Common to use MAP estimate argmax, P(X|y)
argmax, |1;; (%) 1 @(x;,y))
= Probabilities hard to compute with
— Use logs (or often negative log)
argmin, 2 ; Vi(X;,X;) + 2 Di(x;,y)
= |In energy function formulation often think
of assigning best label f,e£ to each node v;

given data y;
argmin; [2; D(y;,f) + 2; V(. T)]
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Similar to Regularization

= Summation of data and smoothness terms
argming [2; D(y;.fy) + 2 ;V(fi.1)]
argming 2, o [p;(ds,f)+ A 2 [p2(fs-TH)]1
— Data term D vs. robust data function p,

— Clique term V vs. robust smoothness function p,
e Over cligues rather than neighbors of each site
e Nearly same definitions on four connected grid

= Probabilistic formulation particularly helpful
for learning problems

— Parameters of D, V or even form of D,V

é‘f@j@ Cornell University
s




Common Cligue Energies

* Enforce “smoothness”, robust to outliers
— Potts model
e Same or outlier (based on label identity)
V.(fi,f;) = 0 when f=f;, 1 otherwise
— Truncated linear model
e Small linear change or outlier (label difference)

— Truncated quadratic model

e Small quadratic change or outlier (label
difference)

VG,’C(fiyfj) = min(r, G|fi_fj|2)
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1D Graphs (Chains)

= Simpler than 2D for illustration purposes
= Fast polynomial time algorithms

= Problem definition
— Sequence of nodes V=(1, ..., n)
— Edges between adjacent pairs (i, i+1)
— Observed value y; at each node
— Seek labeling f=(f,, ..., ), fie4, minimizing
2 [D(yf) + V(i fii)]l  (note v(f,.f,.)=0)
= Contrast with smoothing by convolution
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Viterbil Recurrence

= Don’t need explicit min over f=(f,, ..., f,)
— Instead recursively compute
si(f) = D(y;.T) + ming_; (si1(fi.) + V(fi.1, 1))

— Note s;(f;)) for given | encodes a lowest cost label
seqguence ending in state f; at that node

r V(fi1.f)

N 7
Possible Iabels,< M
values of f. %

4 N

-

Si1(fii1) D(y;.f) si(f)
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Viterbi Algorithm

= Find a lowest cost assignment f,, ..., f
= Initialize
s,(f;) = D(y,,f))+mr, with = cost of f; iIf not uniform
= Recurse
si(f) = D(y;.T) + ming_; (Si.1(fi.1) + V(fi.1,T))
bi(f) = argming_; (s (fi.1) + V(fi.1,T))
= Terminate
ming, s, (f,) , cost of cheapest path (neg log prob)
f, "= argming, s, (f.)
= Backtrack

n




Viterbi Algorithm

= For sequence of n data elements, with m
possible labels per element

— Compute s;(f;) for each element using
recurrence

e O(nm?) time
— For final node compute f, minimizing s,(f,)
— Trace back from node back to first node

e Minimizers computed when computing costs on
“forward” pass

* First step dominates running time

= Avoid searching exponentially many paths
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Large Label Sets Problematic

= Viterbl slow with large number of labels
— O(m?) term in calculating s;(f.)
= For our problems V usually has a special
form so can compute In linear time
— Consider linear clique energy
5i(f) = D(yi.T) + ming; (Si.1(fi.) + [Tia-Ti])

— Minimization term is precisely the distance
transform DTs, ; of a function considered earlier

e Which can compute in linear time
— But linear model not robust

e Can extend to truncated linear
Qf@} Cornell University




Truncated Distance Cost

= Avoid explicit ming_, for each f;
— Truncated linear model
ming_, (si._;(f_) + min(z,|f_-f]))
— Factor f; out of minimizations over f;_ ;
min(ming_,(Si_1(fi.1)+7),
mMing_, (Si.1 (i) +1Ti1-fil))
min(Ming_, (Si_.1 (fi.)) +1), DTg_1(f))
= Analogous for truncated quadratic model

= Similar for Potts model except no need for
distance transform

= O(mn) algorithm for best label sequence




Belief Propagation

» Local message passing scheme Iin graph

— Every node in parallel computes messages to
send to neighbors

e Iterate time-steps, t, until convergence

= Various message updating schemes

— Here consider max product for undirected
graph
e Becomes min sum using costs (neg log probs)
— Message m, ; , sent from node I to j at time t
m; ; (f;)) = ming [V(§,1;)+D(y;,T)

+ ke Mii -1 ()]
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Belief Propagation

= After message passing “converges” at
iteration T

— Each node computes final value based on
neighbors

bi(F)=D(yi, ) +2xerMi,; ()
— Select label f; minimizing b; for each node
e Corresponds to maximizing belief (probability)

= For singly-connected chain node generally
has two neighbors i-1 and 1+1

m; i, (fi.1) = ming [V(T,T_)+D(y; f)+mi g 1 (F)]
— Analogous for i+1 neighbor
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Belief Propagation on a Chain

» Message passed from i1 to I+1
M; i1 ((fi) = ming [V, £ ) +D(y f)+mi ;1 (F)]
= Note relation to Viterbl recursion

= Can show BP converges to same minimum

as Viterbi for chain (if unigue min)
V(fi’fi+1)

N 7
Possible labels, < %
values of f. %

y N

-

M iea(f)  DYLE) My ea(fig)

é‘f@j@ Cornell University
s




Min Sum Belief Prop Algorithm

= For chain, two messages per node

— Node | sends messages m;, to left m; , to right

— Initialize: m;, ,=m; , ,.=(0O, ..., 0) for all nodes |

— Update messages, fortfrom 1 to T
m; . «(f) = ming [V(§,1)+D(y;,f)+m, ;1 (f)]
m; . «(f) = ming [V(§,T)+D(y;,T)+m; ()]

— Compute belief at each node
bi(f)=D(y;,f)+m,; +(f)+m,; +(f)

— Select best at each node (global optimum)
argming b;(f;)
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Relation to HMM

* Hidden Markov model
— Set of unobservable (hidden) states
— Sequence of observed values, vy;

— Transitions between states are Markov
e Depend only on previous state (or fixed number)
e State transition matrix (costs or probabilities)

— Distribution of possible observed values for
each state

— Given y; determine best state sequence

= Widely used In speech recognition and
temporal modeling
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Hidden Markov Models

= Two different but equivalent views

— Seguence of unobservable random variables and
observable values
e 1D MRF with label set

= Penalties V(f;,f;), data costs D(y;,f;)

JECRECRACRECAETANS

— Hidden non-deterministic state machine
e Distribution over observable values for each state

e A B
v e VAN
(D+—(
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Using HMM’s

= Three classical problems for HMM

— Given observation sequence Y=y,, ..., Y, and
HMM A=(D,V,n)

1. Compute P(Y|A), probability of observing Y
given the model
— Alternatively cost (negative log prob)

2. Determine the best state sequence X, ..., X,
given Y
— Various definitions of best, one is MAP estimate

argmax, P(X]Y,A) or min cost

3. Adjust model A=(D,V,n) to maximize P(Y]|L)

— Learning problem often solved by EM




HMM Inference or Decoding

= Determine the best state sequence X
given observation sequence Y

— MAP (maximum a posteriori) estimate
argmax, P(X]Y,A)
e Equivalently minimize cost, negative log prob
e Computed using Viterbi or max-product (min-
sum) belief propagation
— Most likely state at each time P(XY,...,YiA)
e Maximize probability of states individually

e Computed using forward-backward procedure or
sum-product belief propagation
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1D HMM Example

= Estimate bias of “changing coin” from
seguence of observed {H,T} values

— Use MAP formulation
e Find lowest cost state sequence
= States correspond to possible bias values,
e.g., .10, ..., .90 (large state space)
— Data costs —logP(H|x;), -logP(T]X;)
= Used to analyze time varying popularity of
Iitem downloads at Internet Archive
— Each visit results in download or not (H/T)
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1D HMM Example

= Truncated linear penalty term V(f;,f;)
— Contrast with smoothing
— Particularly hard task for 0-1 valued data

T
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Algorithms for Grids (2D)

= Polynomial time for binary label set or for
convex cost function V(f;,f;)

— Compute minimum cut in certain graph
— NP hard in general (reduction from multi-way cut)

= Approximation methods (not global min)
— Graph cuts and “expansion moves”
— Loopy belief propagation
— Many other local minimization techniques
e Monte Carlo sampling methods, annealing, etc.

— Consider graph cuts and belief propagation
e Reasonably fast

e Can characterize the local minimum
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