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Pinhole Camera

Geometric model of camera projection
– Image plane I, which rays intersect
– Camera center C, through which all rays pass
– Focal length f, distance from I to C
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Pinhole Camera Projection

Point (X,Y,Z) in space and image (x,y) in I
– Simplified case 

• C at origin in space
• I perpendicular to Z axis

x=fX/Z (x/f=X/Z)     y=fY/Z (y/f=Y/Z)
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Homogeneous Coordinates

Geometric intuition useful but not well 
suited to calculation
– Projection not linear in Euclidean plane but is 

in projective plane (homogeneous coords)

For a point (x,y) in the plane
– Homogeneous coordinates are (αx, αy, α) for 

any nonzero α (generally use α=1)
• Overall scaling unimportant

(X,Y,W) = (αX, αY, αW)

– Convert back to Euclidean plane
(x,y) = (X/W,Y/W)
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Lines in Homogeneous Coordinates

Consider line in Euclidean plane
ax+by+c = 0  

Equation unaffected by scaling so
aX+bY+cW = 0
uTp = pTu = 0   (point on line test, dot product)

– Where u = (a,b,c)T is the line
– And p = (X,Y,W)T is a point on the line u
– So points and lines have same representation in 

projective plane (i.e., in homog. coords.)
– Parameters of line

• Slope –a/b, x-intercept –c/a, y-intercept –c/b
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Lines and Points

Consider two lines
a1x+b1y+c1 = 0   and   a2x+b2y+c2 = 0 

– Can calculate their intersection as
(b1c2-b2c1/a1b2-a2b1, a2c1-a1c2/a1b2-a2b1)

In homogeneous coordinates
u1=(a1,b1,c1) and u2=(a2,b2,c2)

– Simply cross product p = u1×u2

• Parallel lines yield point not in Euclidean plane

Similarly given two points
p1=(X1,Y1,W1) and p2=(X2,Y2,W2) 

– Line through the points is simply u = p1×p2
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Collinearity and Coincidence

Three points collinear (lie on same line)
– Line through first two is p1×p2

– Third point lies on this line if p3
T(p1×p2)=0

– Equivalently if det[p1 p2 p3]=0

Three lines coincident (intersect at one 
point)
– Similarly det[u1 u2 u3]=0

– Note relation of determinant to cross product
u1 ×u2 = (b1c2-b2c1, a2c1-a1c2, a1b2-a2b1)

Compare to geometric calculations



8

Back to Simplified Pinhole Camera

Geometrically saw x=fX/Z, y=fY/Z
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Principal Point Calibration

Intersection of principal axis with image 
plane often not at image origin
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CCD Camera Calibration

Spacing of grid points
– Effectively separate scale factors along each 

axis composing focal length and pixel spacing
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Camera Rigid Motion

Projection P=K[R|t]
– Camera motion: alignment of 3D coordinate 

systems
– Full extrinsic parameters beyond scope of this 

course, see “Multiple View Geometry” by 
Hartley and Zisserman
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Two View Geometry

Point X in world and two camera centers 
C, C’ define the epipolar plane

– Images x,x’ of X in
two image planes
lie on this plane

– Intersection of
line CC’ with
image planes
define special
points called
epipoles, e,e’

e e′
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Epipolar Lines

Set of points that project to x in I define
line l’ in I’

– Called epipolar line

– Goes through
epipole e’

– A point x in I
thus maps to a
point on l’ in I’

• Rather than
to a point 
anywhere in I
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Epipolar Geometry

Two-camera system defines one 
parameter family (pencil) of planes 
through baseline CC’

– Each such plane
defines matching
epipolar lines in
two image planes

– One parameter
family of lines 
through each epipole

– Correspondence between images
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Converging Stereo Cameras

Corresponding 
points lie on 

corresponding 
epipolar lines

Known camera 
geometry so 
1D not 2D 

search!
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Motion Examples

Epipoles in direction of motion

Parallel to
Image 
Plane

Forward
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Fundamental and Essential Matrix

Linear algebra formulation of the epipolar 
geometry
Fundamental matrix, F, maps point x in I 
to corresponding epipolar line l’ in I’

l’=Fx

– Determined for particular camera geometry
• For stereo cameras only changes if cameras 

move with respect to one another

Essential matrix, E, when camera 
calibration (intrinsic parameters) known
– See slides 9 and 10
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Fundamental Matrix

Epipolar constraint
x’TFx=x’Tl’=0

– Thus from enough corresponding pairs of 
points in the two images can solve for F
• However not as simple as least squares 

minimization because F not fully general matrix

Consider form of F in more detail

L      A
x  → l → l’

F=AL

A

l
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L: x → l
– Epipolar line l goes through x and epipole e

– Epipole determines L
l = x × e
l = Lx     (rewriting cross product)

– If e=(u,v,w)

– L is rank 2 and has 2 d.o.f. 

Form of Fundamental Matrix
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Form of Fundamental Matrix

A: l → l’
– Constrained by 3 pairs of epipolar lines

l’i = A li
– Note only 5 d.o.f.

• First two line correspondences each provide two 
constraints

• Third provides only one constraint as lines must 
go through intersection of first two

F=AL rank 2 matrix with 7 d.o.f.
– As opposed to 8 d.o.f. in 3x3 homogeneous 

system
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Properties of F

Unique 3x3 rank 2 matrix satisfying 
x’TFx=0 for all pairs x,x’
– Constrained minimization techniques can be 

used to solve for F given point pairs

F has 7 d.o.f.
– 3x3 homogeneous (9-1=8), rank 2 (8-1=7)

Epipolar lines l’=Fx and reverse map l=FTx’
– Because also (Fx)Tx’=0 but then xT(FTx’)=0

Epipoles e’TF=0 and Fe=0
– Because e’Tl’=0 for any l’; Le=0 by construction
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Stereo (Epipolar) Rectification

Given F, simplify stereo matching problem 
by warping images 
– Shared image plane for two cameras
– Epipolar lines parallel to x-axis

• Epipole at (1,0,0)
• Corresponding scan lines of two images

– OpenCV: calibration and rectification

e

e
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Planar Rectification

Move epipoles to infinity
– Poor when epipoles near image 
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Stereo Matching

Seek corresponding pixels in I, I’
– Only along epipolar lines

Rectified imaging geometry so just 
horizontal disparity D at each pixel

I’(x’,y’)=I(x+D(x,y),y)

Best methods minimize energy based on 
matching (data) and discontinuity costs

Stereo
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Plane Homography

Projective transformation mapping points 
in one plane to points in another
In homogeneous coordinates

Maps four (coplanar) points to any four
– Quadrilateral to quadrilateral
– Does not preserve parallelism
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Contrast with Affine

Can represent in Euclidean plane x’=Lx+t
– Arbitrary 2x2 matrix L and 2-vector t
– In homogeneous coordinates

Maps three points to any three
– Maps triangles to triangles
– Preserves parallelism
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Homography Example

Changing viewpoint of single view
– Correspondences in observed and desired views
– E.g., from 45 degree to frontal view

• Quadrilaterals to rectangles

– Variable resolution and non-planar artifacts
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Homography and Epipolar Geometry

Plane in space π induces homography H 
between image planes

x’=Hπx for point X on π, x on I, x’ on I’

π
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Obeys Epipolar Geometry

Given F,Hπ no search for x’ (points on π)

Maps epipoles, e’= Hπe

π
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Computing Homography

Correspondences of four points that are 
coplanar in world (no need for F)
– Substantial error if not coplanar

Fundamental matrix F and 3 point 
correspondences
– Can think of pair e,e’ as providing fourth 

correspondence

Fundamental matrix plus point and line 
correspondences
Improvements
– More correspondences and least squares
– Correspondences farther apart
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Plane Induced Parallax

Determine homography of a plane
– Remaining differences reflect depth from plane
– Flat surfaces like in sporting events
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Plane + Parallax Correspondences

l’ = x’ × Hx
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Plane + Parallax

Vaish et al CVPR04
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Projective Depth

Distance between Hπx and x’ (along l’) 
proportional to distance of X from plane π
– Sign governs which side of plane
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Multiple Cameras

Similarly extensive geometry for three 
cameras
– Known as tri-focal tensor

• Beyond scope of this course

• Three lines
• Three points
• Line and 2 points
• Point and 2 lines


