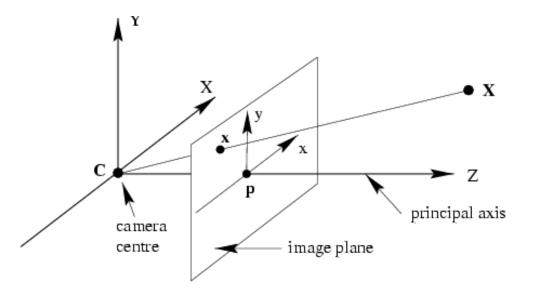


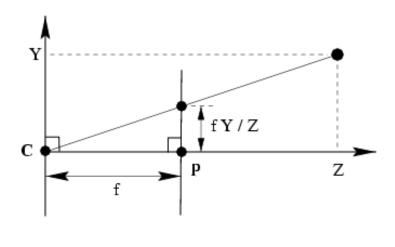
. Jamera Joon

Dan Huttenlocher

Pinhole Camera

- Geometric model of camera projection
 - Image plane I, which rays intersect
 - Camera center C, through which all rays pass
 - Focal length f, distance from I to C



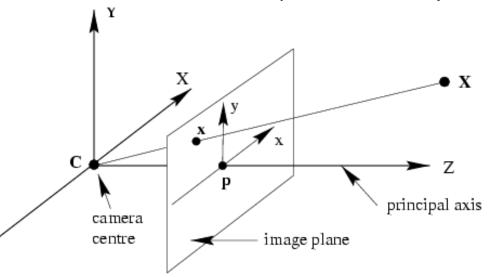


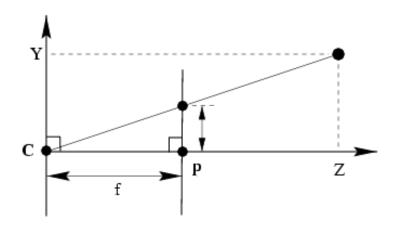
Pinhole Camera Projection

- Point (X,Y,Z) in space and image (x,y) in I
 - Simplified case
 - C at origin in space
 - I perpendicular to Z axis

$$x=fX/Z$$
 ($x/f=X/Z$) $y=fY/Z$ ($y/f=Y/Z$)

$$y=fY/Z (y/f=Y/Z)$$





Homogeneous Coordinates

- Geometric intuition useful but not well suited to calculation
 - Projection not linear in Euclidean plane but is in projective plane (homogeneous coords)
- For a point (x,y) in the plane
 - Homogeneous coordinates are $(\alpha x, \alpha y, \alpha)$ for any nonzero α (generally use α =1)
 - Overall scaling unimportant

$$(X,Y,W) = (\alpha X, \alpha Y, \alpha W)$$

- Convert back to Euclidean plane

$$(x,y) = (X/W,Y/W)$$

Lines in Homogeneous Coordinates

Consider line in Euclidean plane

$$ax+by+c=0$$

Equation unaffected by scaling so

$$aX+bY+cW=0$$

 $u^{T}p = p^{T}u = 0$ (point on line test, dot product)

- Where $u = (a,b,c)^T$ is the line
- And $p = (X,Y,W)^T$ is a point on the line u
- So points and lines have same representation in projective plane (i.e., in homog. coords.)
- Parameters of line
 - Slope –a/b, x-intercept –c/a, y-intercept –c/b

Lines and Points

Consider two lines

$$a_1x + b_1y + c_1 = 0$$
 and $a_2x + b_2y + c_2 = 0$

- Can calculate their intersection as $(b_1c_2-b_2c_1/a_1b_2-a_2b_1, a_2c_1-a_1c_2/a_1b_2-a_2b_1)$
- In homogeneous coordinates

$$u_1 = (a_1, b_1, c_1)$$
 and $u_2 = (a_2, b_2, c_2)$

- Simply cross product $p = u_1 \times u_2$
 - Parallel lines yield point not in Euclidean plane
- Similarly given two points

$$p_1 = (X_1, Y_1, W_1)$$
 and $p_2 = (X_2, Y_2, W_2)$

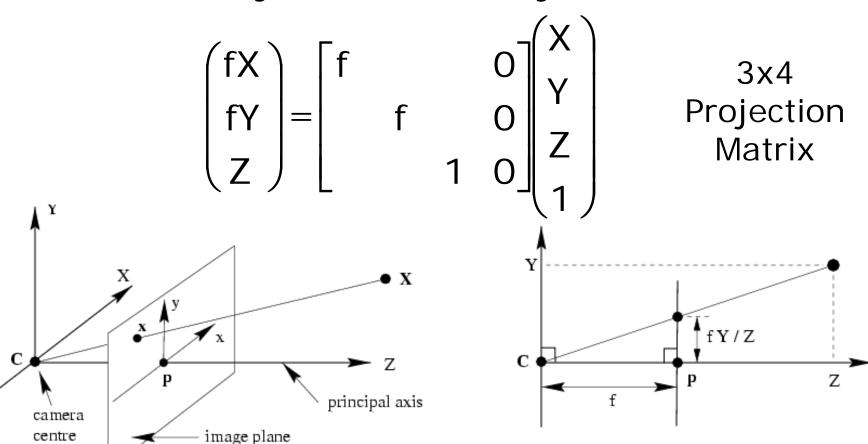
- Line through the points is simply $u = p_1 \times p_2$

Collinearity and Coincidence

- Three points collinear (lie on same line)
 - Line through first two is $p_1 \times p_2$
 - Third point lies on this line if $p_3^T(p_1 \times p_2) = 0$
 - Equivalently if $det[p_1 p_2 p_3] = 0$
- Three lines coincident (intersect at one point)
 - Similarly $det[u_1 u_2 u_3] = 0$
 - Note relation of determinant to cross product $u_1 \times u_2 = (b_1c_2-b_2c_1, a_2c_1-a_1c_2, a_1b_2-a_2b_1)$
- Compare to geometric calculations

Back to Simplified Pinhole Camera

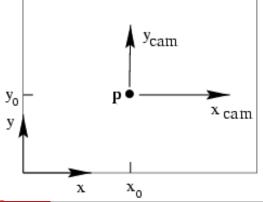
Geometrically saw x=fX/Z, y=fY/Z



Principal Point Calibration

 Intersection of principal axis with image plane often not at image origin

$$\begin{pmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$



$$K = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 & matrix \end{bmatrix}$$
 (Intrinsic)

CCD Camera Calibration

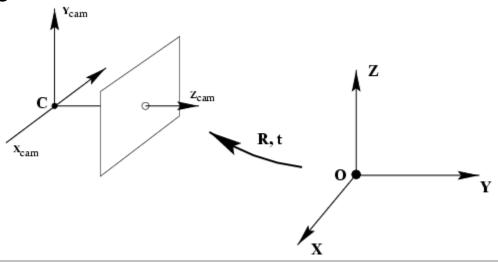
- Spacing of grid points
 - Effectively separate scale factors along each axis composing focal length and pixel spacing

$$K = \begin{bmatrix} m_{\mathbf{x}} f & p_{\mathbf{x}} \\ m_{\mathbf{y}} f & p_{\mathbf{y}} \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \alpha & p_x \\ \beta & p_y \\ 1 \end{bmatrix}$$

Camera Rigid Motion

- Projection P=K[R|t]
 - Camera motion: alignment of 3D coordinate systems
 - Full extrinsic parameters beyond scope of this course, see "Multiple View Geometry" by Hartley and Zisserman

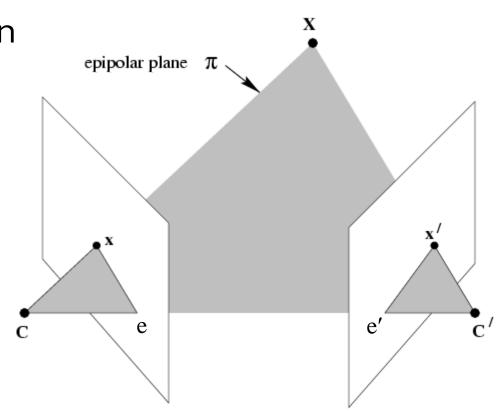


Two View Geometry

Point X in world and two camera centers
 C, C' define the <u>epipolar plane</u>

 Images x,x' of X in two image planes lie on this plane

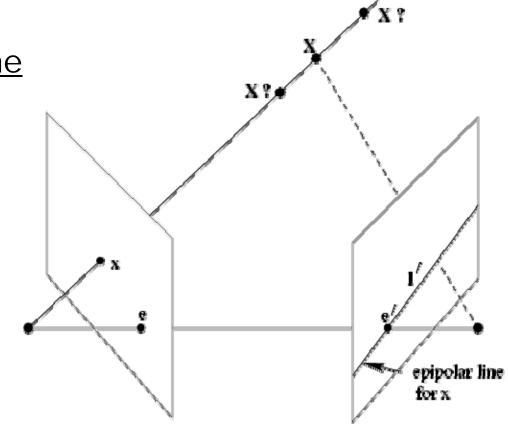
 Intersection of line CC' with image planes define special points called epipoles, e,e'



Epipolar Lines

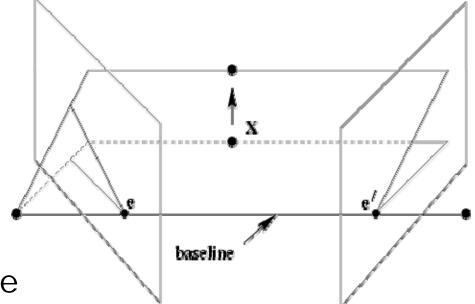
Set of points that project to x in I define line ℓ' in I'

- Called epipolar line
- Goes through epipole e'
- A point x in I
 thus maps to a
 point on \(\ell' \) in I'
 - Rather than to a point anywhere in I



Epipolar Geometry

- Two-camera system defines one parameter family (pencil) of planes through <u>baseline</u> CC'
 - Each such plane defines matching epipolar lines in two image planes
 - One parameter
 family of lines
 through each epipole

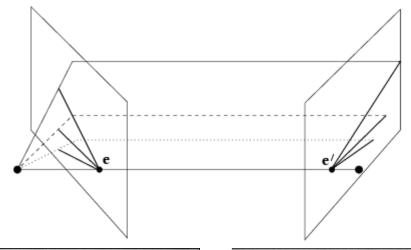


Correspondence between images

Converging Stereo Cameras

Corresponding points lie on corresponding epipolar lines

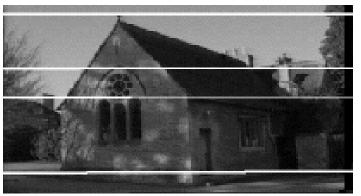
Known camera geometry so 1D not 2D search!

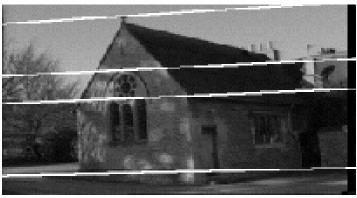


Motion Examples

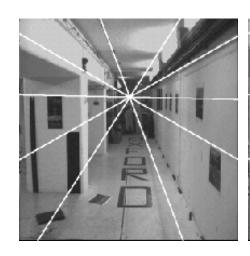
Epipoles in direction of motion

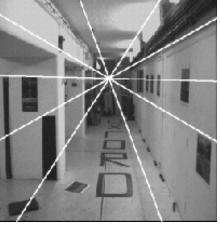
Parallel to Image Plane





Forward





Fundamental and Essential Matrix

- Linear algebra formulation of the epipolar geometry
- Fundamental matrix, F, maps point x in I to corresponding epipolar line \(\ell'\) in I'

$$\ell' = Fx$$

- Determined for particular camera geometry
 - For stereo cameras only changes if cameras move with respect to one another
- Essential matrix, E, when camera calibration (intrinsic parameters) known
 - See slides 9 and 10

Fundamental Matrix

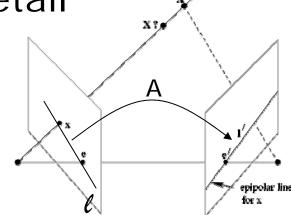
Epipolar constraint

$$X'^TFX = X'^T\ell' = 0$$

- Thus from enough corresponding pairs of points in the two images can solve for F
 - However not as simple as least squares minimization because F not fully general matrix
- Consider form of F in more detail

$$\begin{array}{cccc} & L & A \\ X & \rightarrow & \ell & \rightarrow \ell' \end{array}$$

$$F = AL$$



Form of Fundamental Matrix

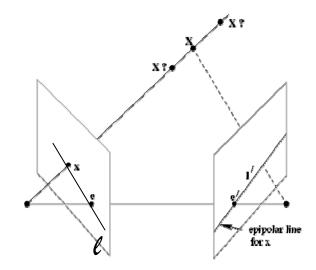
- L: $X \rightarrow \ell$
 - Epipolar line ℓ goes through x and epipole e
 - Epipole determines L

$$\ell = x \times e$$
 $\ell = Lx$ (rewriting cross product)

- If e=(u,v,w)

$$L = \begin{bmatrix} 0 & w & -v \\ -w & 0 & u \\ v & -u & 0 \end{bmatrix}$$

- L is rank 2 and has 2 d.o.f.



Form of Fundamental Matrix

- A: $\ell \rightarrow \ell'$
 - Constrained by 3 pairs of epipolar lines

$$\ell'_{\mathbf{i}} = \mathsf{A} \ell_{\mathbf{i}}$$

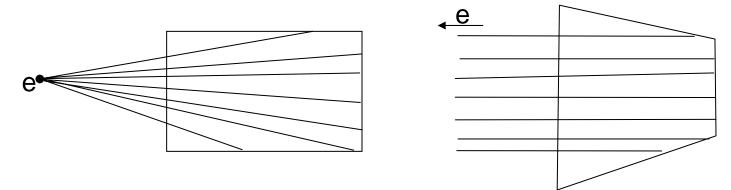
- Note only 5 d.o.f.
 - First two line correspondences each provide two constraints
 - Third provides only one constraint as lines must go through intersection of first two
- F=AL rank 2 matrix with 7 d.o.f.
 - As opposed to 8 d.o.f. in 3x3 homogeneous system

Properties of F

- Unique 3x3 rank 2 matrix satisfying x'^TFx=0 for all pairs x,x'
 - Constrained minimization techniques can be used to solve for F given point pairs
- F has 7 d.o.f.
 - -3x3 homogeneous (9-1=8), rank 2 (8-1=7)
- Epipolar lines ℓ'=Fx and reverse map ℓ=F^Tx'
 - Because also $(Fx)^Tx'=0$ but then $x^T(F^Tx')=0$
- Epipoles e'TF=0 and Fe=0
 - Because $e^{r}\ell'=0$ for any ℓ' ; Le=0 by construction

Stereo (Epipolar) Rectification

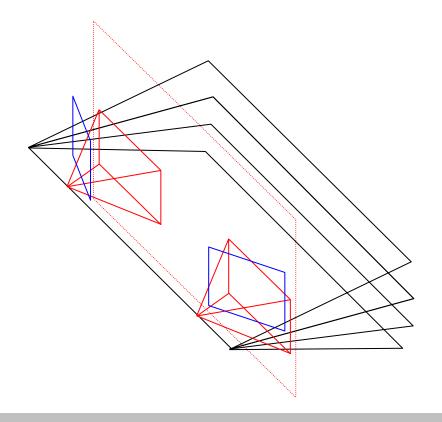
- Given F, simplify stereo matching problem by warping images
 - Shared image plane for two cameras
 - Epipolar lines parallel to x-axis
 - Epipole at (1,0,0)
 - Corresponding scan lines of two images



- OpenCV: calibration and rectification

Planar Rectification

- Move epipoles to infinity
 - Poor when epipoles near image



Stereo Matching

- Seek corresponding pixels in I, I'
 - Only along epipolar lines
- Rectified imaging geometry so just horizontal disparity D at each pixel

$$I'(x',y') = I(x+D(x,y),y)$$

 Best methods minimize energy based on matching (data) and discontinuity costs

Plane Homography

- Projective transformation mapping points in one plane to points in another
- In homogeneous coordinates

$$\begin{pmatrix} aX+bY+cW \\ dX+eY+fW \\ gX+hY+iW \end{pmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{pmatrix} X \\ Y \\ W \end{pmatrix}$$

- Maps four (coplanar) points to any four
 - Quadrilateral to quadrilateral
 - Does not preserve parallelism

Contrast with Affine

- Can represent in Euclidean plane x'=Lx+t
 - Arbitrary 2x2 matrix L and 2-vector t
 - In homogeneous coordinates

$$\begin{pmatrix} aX+bY+cW \\ dX+eY+fW \\ W \end{pmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & i \end{bmatrix} \begin{pmatrix} X \\ Y \\ W \end{pmatrix}$$

- Maps three points to any three
 - Maps triangles to triangles
 - Preserves parallelism

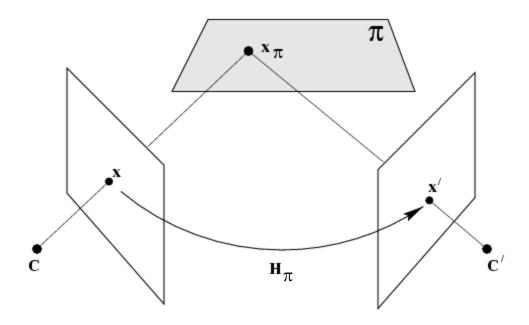
Homography Example

- Changing viewpoint of single view
 - Correspondences in observed and desired views
 - E.g., from 45 degree to frontal view
 - Quadrilaterals to rectangles
 - Variable resolution and non-planar artifacts

Homography and Epipolar Geometry

 Plane in space π induces homography H between image planes

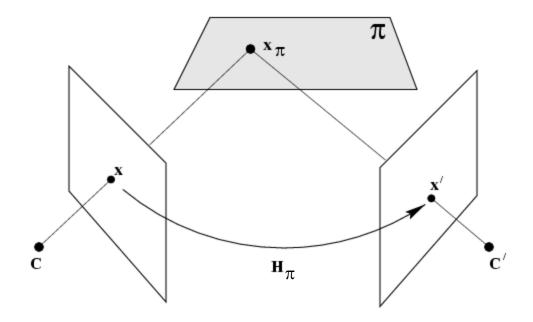
 $x' = H_{\pi}x$ for point X on π , x on I, x' on I'



Obeys Epipolar Geometry

• Given F, H_{π} no search for x' (points on π)

• Maps epipoles, $e' = H_{\pi}e$

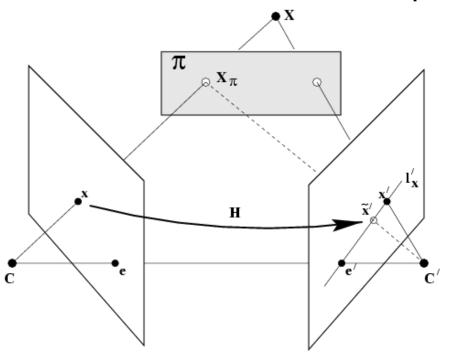


Computing Homography

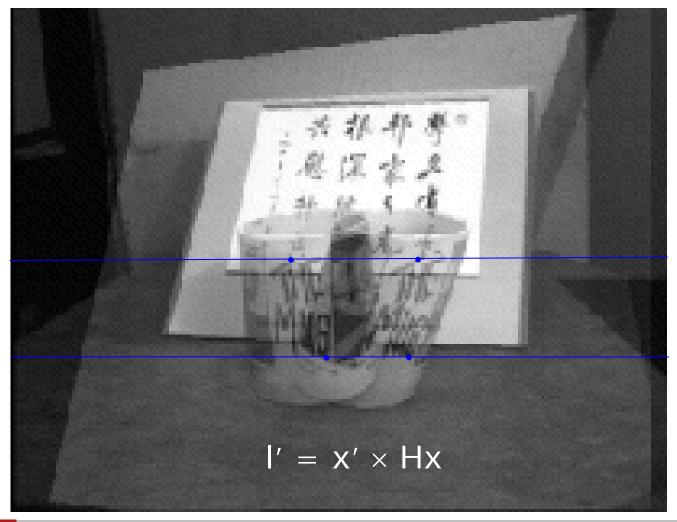
- Correspondences of four points that are coplanar in world (no need for F)
 - Substantial error if not coplanar
- Fundamental matrix F and 3 point correspondences
 - Can think of pair e,e' as providing fourth correspondence
- Fundamental matrix plus point and line correspondences
- Improvements
 - More correspondences and least squares
 - Correspondences farther apart

Plane Induced Parallax

- Determine homography of a plane
 - Remaining differences reflect depth from plane
 - Flat surfaces like in sporting events



Plane + Parallax Correspondences

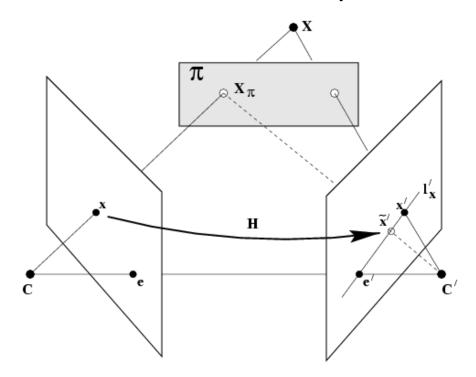


Plane + Parallax

Vaish et al CVPR04

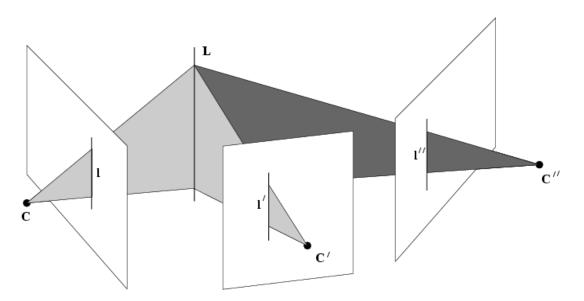
Projective Depth

- Distance between $H_{\pi}x$ and x' (along I') proportional to distance of X from plane π
 - Sign governs which side of plane



Multiple Cameras

- Similarly extensive geometry for three cameras
 - Known as tri-focal tensor
 - Beyond scope of this course



- Three lines
- Three points
- Line and 2 points
- Point and 2 lines