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Comparing Binary Feature Maps

Binary “image” specifying feature locations
– In x,y or x,y,scale

Variations will cause maps not to agree 
precisely when images aligned
Measures based on proximity rather than 
exact superposition
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Binary Correlation

Recall cross correlation

For binary images counting number of 
coincident 1-valued pixels
– Number of on pixels in AND at offset (i,j)

SSD (sum squared difference) – XOR

Suffer from measuring exact agreement 
and not proximity
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Hausdorff Distance

Classical definition
– Directed distance (not symmetric)

• h(A,B) = maxa∈A minb∈B ⎟⎜a-b⎟⎜

– Distance (symmetry)
• H(A,B) = max(h(A,B), h(B,A))

Minimization term simply dist trans of B
– h(A,B) = maxa∈A DB(a)
– Maximize over selected values of dist trans

Classical distance not robust, single “bad 
match” dominates value 
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Hausdorff Matching

Best match
– Minimum fractional Hausdorff distance over 

given space of transformations

Good matches
– Above some fraction (rank) and/or below some 

distance

Each point in (quantized) transformation 
space defines a distance
– Search over transformation space

• Efficient branch-and-bound “pruning” to skip 
transformations that cannot be good
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Hausdorff Matching

Partial (or fractional) Hausdorff distance to 
address robustness to outliers
– Rank rather than maximum

• hk(A,B) = ktha∈A minb∈B⎟⎜a-b⎟⎜ = ktha∈A DB(a)

– K-th largest value of DB at locations given by A

– Often specify as fraction f rather than rank

• 0.5, median of distances; 0.75, 75th percentile

1,1,2,2,3,3,3,3,4,4,5,12,14,15

1.0.75.5.25
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Fast Hausdorff Search

Branch and bound hierarchical search of 
transformation space
Consider 2D transformation space of 
translation in x and y
– (Fractional) Hausdorff distance cannot change 

faster than linearly with translation
• Similar constraints for other transformations

– Quad-tree decomposition, compute distance 
for transform at center of each cell
• If larger than cell half-width, rule out cell
• Otherwise subdivide cell and consider children
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Branch and Bound Illustration

Guaranteed (or admissible) 
search heuristic
– Bound on how good answer 

could be in unexplored region
• Cannot miss an answer

– In worst case won’t rule anything 
out

In practice rule out vast 
majority of transformations
– Can use even simpler tests than 

computing distance at cell center
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Chamfer Distance

Sum of closest point distances
Ch(A,B) = Σa∈A min b∈B ⎟⎜a-b⎟⎜

Generally use asymmetric measure but 
can be symmatrized

CH(A,B) = Ch(A,B) + Ch(B,A)
As for Hausdorff distance minimization 
term is simply a distance transform
While intuitively may appear more robust 
to outliers than max, still quite sensitive
– Trimming can be useful in practice
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Dilation

The Minkowski sum of two point sets A,B is 
result of adding every point of A to every 
point of B
– Note for finite sets, cardinality of result is 

product of set cardinalities

For binary images this is called dilation
– As with correlation and convolution think of 

asymmetrically as function and kernel or mask
– Replace each on pixel of F by mask H

• Generally center pixel of H is on
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Dilation

Dilation by a disk of radius d corresponds 
to level sets of L2 distance transform for 
distances ≤d
– Analogously for square of radius d and L-

infinity norm
– 3x3 square example (radius 1)
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Dilation and Correlation

Correlation of F with G dilated by a disk of 
radius d
– Counts number of on pixels in F at each [i,j] 

that are within distance d of some on pixel in G
– Normalize the count by dividing by total 

number of on pixels in F

Corresponds to the Hausdorff fraction
– Fraction within distance d rather than distance 

for fraction f
hf(A,B) = ftha∈A minb∈B⎟⎜a-b⎟⎜

where fth quantile
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DT Based Matching Measures

Fractional Hausdorff distance
– Kth largest value selected from DT

Chamfer
– Sum of values selected from DT

• Suffers from same robustness problems as 
classical Hausdorff distance

• Max intuitively worse but sum also bad
– Robust variants

• Trimmed: sum the K smallest distances (same 
as Hausdorff but sum rather than largest of K)

• Truncated: truncate individual distances before 
summing
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Comparing DT Based Measures

Monte Carlo experiments with known 
object location and synthetic clutter
– Matching edge locations

Varying percent clutter
– Probability of edge 

pixel 2.5-15%

Varying occlusion
– Single missing interval, 

10-25% of boundary

Search over location,
scale, orientation 5% Clutter Image
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ROC Curves

Probability of false alarm vs. detection
– 10% and 15% occlusion with 5% clutter
– Chamfer is lowest, Hausdorff (f=.8) is highest
– Chamfer truncated distance better than trimmed

Hausdorff, f=.8

Trimmed Chamfer, f=.8

Truncated Chamfer, d=2

Chamfer
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Edge Orientation Information

Match edge orientation as well as location
– Edge normals or gradient direction

Increases detection performance and 
speeds up matching
– Better able to discriminate object from clutter
– Better able to eliminate cells in branch and 

bound search

Distance in 3D feature space [px,py,αpo]
– α weights orientation versus location
– ktha∈A minb∈B⎟⎜ a-b ⎟⎜ = ktha∈A DB(a) 
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ROC’s for Oriented Edge Pixels

Vast improvement for moderate clutter
– Images with 5% randomly generated contours
– Good for 20-25% occlusion rather than 2-5%

Oriented Edges Location Only
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Summary of DT Based Matching

Fast compared to explicitly considering 
pairs of model and data features
– Hierarchical search over transformation space

Important to use robust distance
– Straight Chamfer very sensitive to outliers

• Truncated DT can be computed fast

No reason to use approximate DT 
– Fast exact method for L2

2 or truncated L2
2

For edge features use orientation too 
– Comparing normals or using multiple edge maps


