

8. Matching Binary Images

Dan Huttenlocher

Comparing Binary Feature Maps

- Binary "image" specifying feature locations
 - In x,y or x,y,scale
- Variations will cause maps not to agree precisely when images aligned
- Measures based on proximity rather than

exact superposition

Binary Correlation

Recall cross correlation

$$C[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]$$

- For binary images counting number of coincident 1-valued pixels
 - Number of on pixels in AND at offset (i,j)
- SSD (sum squared difference) XOR

$$S[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} (H[u, v] - F[i+u, j+v])^{2}$$

 Suffer from measuring exact agreement and not proximity

Hausdorff Distance

- Classical definition
 - Directed distance (not symmetric)
 - $h(A,B) = \max_{a \in A} \min_{b \in B} ||a-b||$
 - Distance (symmetry)
 - $\bullet \ H(A,B) = \max(h(A,B), h(B,A))$
- Minimization term simply dist trans of B
 - $-h(A,B) = \max_{a \in A} D_B(a)$
 - Maximize over selected values of dist trans
- Classical distance not robust, single "bad match" dominates value

Hausdorff Matching

- Best match
 - Minimum fractional Hausdorff distance over given space of transformations
- Good matches
 - Above some fraction (rank) and/or below some distance
- Each point in (quantized) transformation space defines a distance
 - Search over transformation space
 - Efficient branch-and-bound "pruning" to skip transformations that cannot be good

Hausdorff Matching

- Partial (or fractional) Hausdorff distance to address robustness to outliers
 - Rank rather than maximum
 - $h_k(A,B) = kth_{a \in A} \min_{b \in B} ||a-b|| = kth_{a \in A} D_B(a)$
 - K-th largest value of D_B at locations given by A
 - Often specify as fraction f rather than rank
 - 0.5, median of distances; 0.75, 75th percentile

Fast Hausdorff Search

- Branch and bound hierarchical search of transformation space
- Consider 2D transformation space of translation in x and y
 - (Fractional) Hausdorff distance cannot change faster than linearly with translation
 - Similar constraints for other transformations
 - Quad-tree decomposition, compute distance for transform at center of each cell
 - If larger than cell half-width, rule out cell
 - Otherwise subdivide cell and consider children

Branch and Bound Illustration

 Guaranteed (or admissible) search heuristic

Evaluate

Bound on how good answer could be in unexplored region

Subdivide

- Cannot miss an answer
- In worst case won't rule anything Evaluate out
- In practice rule out vast majority of transformations

Subdivide

 Can use even simpler tests than computing distance at cell center

Evaluate

Chamfer Distance

- Sum of closest point distances $Ch(A,B) = \sum_{a \in A} \min_{b \in B} ||a-b||$
- Generally use asymmetric measure but can be symmatrized

$$CH(A,B) = Ch(A,B) + Ch(B,A)$$

- As for Hausdorff distance minimization term is simply a distance transform
- While intuitively may appear more robust to outliers than max, still quite sensitive
 - Trimming can be useful in practice

Dilation

- The Minkowski sum of two point sets A,B is result of adding every point of A to every point of B
 - Note for finite sets, cardinality of result is product of set cardinalities

$$F \oplus H = \{ f + g \mid f \in F, g \in G \}$$

- For binary images this is called dilation
 - As with correlation and convolution think of asymmetrically as function and kernel or mask
 - Replace each on pixel of F by mask H
 - Generally center pixel of H is on

Dilation

- Dilation by a disk of radius d corresponds to level sets of L² distance transform for distances ≤d
 - Analogously for square of radius d and Linfinity norm
 - 3x3 square example (radius 1)

Dilation and Correlation

- Correlation of F with G dilated by a disk of radius d
 - Counts number of on pixels in F at each [i,j]
 that are within distance d of some on pixel in G
 - Normalize the count by dividing by total number of on pixels in F
- Corresponds to the Hausdorff fraction
 - Fraction within distance d rather than distance for fraction f

$$h_f(A,B) = fth_{a \in A} min_{b \in B} ||a-b||$$

where fth quantile

DT Based Matching Measures

- Fractional Hausdorff distance
 - Kth largest value selected from DT
- Chamfer
 - Sum of values selected from DT
 - Suffers from same robustness problems as classical Hausdorff distance
 - Max intuitively worse but sum also bad
 - Robust variants
 - Trimmed: sum the K smallest distances (same as Hausdorff but sum rather than largest of K)
 - Truncated: truncate individual distances before summing

Comparing DT Based Measures

- Monte Carlo experiments with known object location and synthetic clutter
 - Matching edge locations
- Varying percent clutter
 - Probability of edge pixel 2.5-15%
- Varying occlusion
 - Single missing interval,
 10-25% of boundary
- Search over location, scale, orientation

5% Clutter Image

ROC Curves

- Probability of false alarm vs. detection
 - 10% and 15% occlusion with 5% clutter
 - Chamfer is lowest, Hausdorff (f=.8) is highest
 - Chamfer truncated distance better than trimmed

Edge Orientation Information

- Match edge orientation as well as location
 - Edge normals or gradient direction
- Increases detection performance and speeds up matching
 - Better able to discriminate object from clutter
 - Better able to eliminate cells in branch and bound search
- Distance in 3D feature space $[p_x, p_y, \alpha p_o]$
 - α weights orientation versus location
 - $kth_{a \in A} min_{b \in B} \| a b \| = kth_{a \in A} D_B(a)$

ROC's for Oriented Edge Pixels

- Vast improvement for moderate clutter
 - Images with 5% randomly generated contours
 - Good for 20-25% occlusion rather than 2-5%

Oriented Edges

Location Only

Summary of DT Based Matching

- Fast compared to explicitly considering pairs of model and data features
 - Hierarchical search over transformation space
- Important to use robust distance
 - Straight Chamfer very sensitive to outliers
 - Truncated DT can be computed fast
- No reason to use approximate DT
 - Fast exact method for L₂² or truncated L₂²
- For edge features use orientation too
 - Comparing normals or using multiple edge maps

