

7. Distance Transforms

Dan Huttenlocher

Comparing Binary Feature Maps

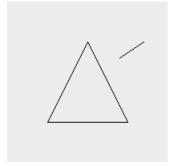
- Binary "image" specifying feature locations
 - In x,y or x,y,scale
- Even small variations will cause maps not to align precisely
- Distance transforms a natural way to "blur" feature locations geometrically
- Natural generalization also applies not just to binary data but to any cost or height map

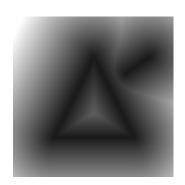
Distance Transform

- Map of distances from any point to nearest point of some type
 - Distances to object boundaries in computer graphics, robotics and AI
 - Distances to image features in computer vision
- Generally used for data on grid
 - Pixels or voxels, 2D or 3D
 - Related to exact algorithms for Voronoi diagrams
- Efficient algorithms for computing
 - Linear in number of pixels, fast in practice

Uses of Distance Transforms

- Image matching and object recognition
 - Hausdorff and Chamfer matching
 - Skeletonization





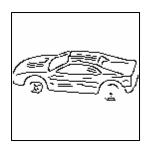
- Path planning and navigation
 - High clearance paths

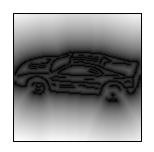
Uses of Distance Transforms

- Proximity-based matching
 - For each point of set A nearest point of set B
 - But not correspondence or one-to-one matching
 - Related to morphological dilation
 - Replace each point with disc
- Path planning and obstacle avoidance
 - Maximal clearance path
 - Re-compute if moving obstacles
 - But bound on how fast changes

Distance Transform Formula

- Set of points, P, and measure of distance $DT(P)[x] = min_{y \in P} dist(x,y)$
- For each location x distance to nearest point y in P
 - Can think of "cones" rooted at each y ∈ P
 - Min over all the cones (lower envelope)





Different Distance Measures

Euclidean distance (L₂ norm)

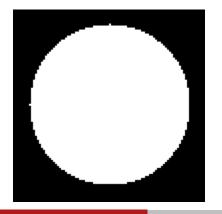
$$sqrt((x_1 - y_1)^2 + (x_2 - y_2)^2 + ...)$$

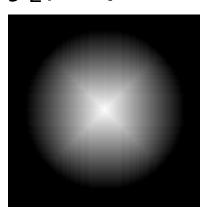
City block distance (L₁ norm)

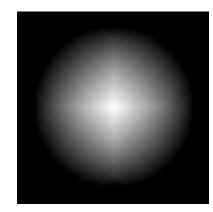
$$|x_1 - y_1| + |x_2 - y_2| + \dots$$

Chessboard distance (L_∞ norm)

$$\max(|x_1 - y_1|, |x_2 - y_2|, ...)$$



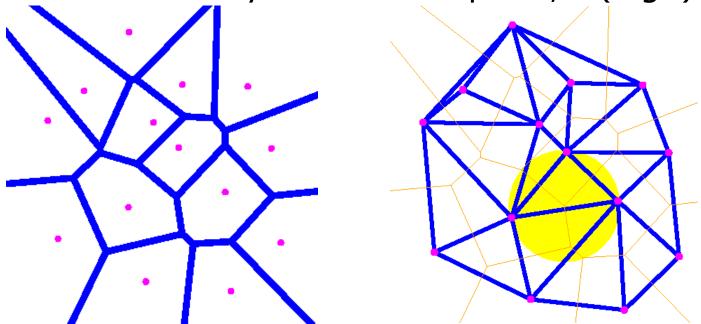




Relation to Voronoi Diagram

- Equidistant from two or more points
 - Dual of Delaunay triangulation
 - Compute in O(nlogn) time (Graham scan)

Use to efficiently find closest point, O(logn)

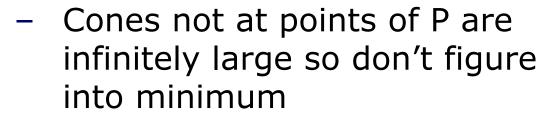


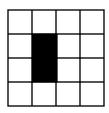
Grid Formulation of Distance Trans.

• Commonly computed on a grid Γ , for set of points $P \subseteq \Gamma$

$$DT(P)[x] = \min_{y \in \Gamma} (dist(x,y) + 1_P(y))$$

- Where 1_P(y) indicator function for P
 - Value of 0 when $y \in P$, ∞ otherwise
 - Can think of cone rooted at each point of grid, rather than of P





2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

Naïve Computation

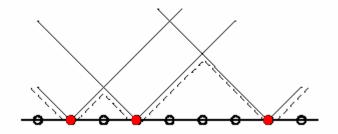
- For each point on the grid, explicitly consider each point of P and minimize
 - For n grid points and m points in P take time
 O(mn)
 - Note that m is O(n), so $O(n^2)$ method
- Not very practical even for moderate size grids such as images
 - Even a low-resolution video frame has about 300K pixels
 - About 100 billion distance computations

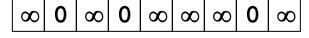
Better Methods on Grid

- 1D case, L₁ norm: $|x_1 y_1| + |x_2 y_2|$
 - Two passes:
 - Find closest point on left
 - Find closest on right if closer than one on left
 - Incremental:
 - Moving left-to-right, closest point on left either previous closest point or current point
 - Analogous for moving right-to-left
 - Can keep track of closest point as well as distance to it
 - Will illustrate distance only, less book-keeping

L₁ Distance Transform Algorithm

- Two pass O(n) algorithm for 1D L₁ norm (just distance and not source point)
 - 1. <u>Initialize</u>: For all j $D[j] \leftarrow 1_P[j]$
 - 2. Forward: For j from 1 up to n-1 $D[j] \leftarrow min(D[j],D[j-1]+1)$
- 1 0
- 3. <u>Backward</u>: For j from n-2 down to 0 $D[j] \leftarrow min(D[j],D[j+1]+1)$

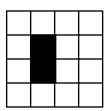




L₁ Distance Transform

- 2D case analogous to 1D
 - Initialization
 - Forward and backward pass
 - Forward pass adds one to closest above and to left, takes min with self
 - Backward pass analogous below and to right

0	1
1	S



8	8	8	σo
σ	0	8	σ ₀
8	0	8	∞
8	8	8	8

os l	œ	8	8
σ ₀	0	1	8
∞	0	8	8
∞	8	8	8

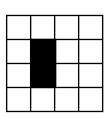
8	8	8	8
8	0	1	2
8	0	1	2
8	1	2	3

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

L_∞ Distance Transform

- What about Chessboard distance $max(|x_1 y_1|, |x_2 y_2|)$?
- Same approach of initialization and two passes
 - Now also consider point one away on both axes

1	1
1	S



8	8	8	∞
∞	0	8	∞
8	0	8	œ
8	8	8	8

8	8	8	8
8	0	1	8
8	0	8	8
8	8	8	8

8	8	8	8
8	0	1	2
8	0	1	2
8	1	1	2

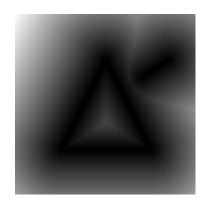
1	1	1	2
1	0	1	2
1	0	1	2
1	1	1	2

L₂ Distance Transform

- What about Euclidean distance $sqrt((x_1 y_1)^2 + (x_2 y_2)^2)$?
- Not linear function of location on grid
 - Simple local propagation methods not correct

$\sqrt{2}$	1
1	S

- Local propagation just approximation
 - Introduces considerable error, particularly at larger distances
 - Bigger neighborhood can help but not fix



Exact L₂ Distance Transform

- 1D case doesn't seem helpful
 - Same as L₁
 - But just saw 2D case not same as L₁
- Several quite involved methods
 - Linear or O(nlogn) time, but at edge of practical
- Revisit 1D
 - Decompose 2D into two 1D transforms
 - Yield relatively simple method, though not local
 - Requires more advanced way of understanding running time – amortized analysis

Squared Distance on 2D Grid

- Consider f(x,y) on grid
 - For instance, indicator function for membership in point set P, 0 or ∞
- Distance transform

$$D_{f}(x,y) = \min_{x',y'}((x-x')^{2} + (y-y')^{2} + f(x',y'))$$

First term does not depend on y'

=
$$\min_{x'}((x-x')^2 + \min_{y'}((y-y')^2 + f(x',y')))$$

 But then can view as 1D distance transform restricted to column indexed by x'

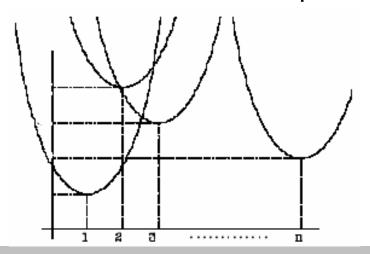
$$= \min_{x'}((x-x')^2 + D_{f|x'}(y))$$

Approach for L₂ Distance Transform

- Start with point set on grid
- Initialize to 0,∞ cost function
- Perform 1D transform on columns of cost function
- Perform 1D transform on rows of result
 - Cascade results in each dimension
- Compute square roots if actual distance needed
 - Note, as does not change minima, often more efficient to leave as squared distance

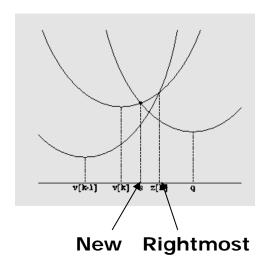
Computing 1D L₂² Transform Efficiently

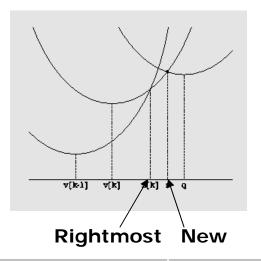
- Compute $h(x)=\min_{x'}((x-x')^2+f(x'))$
- Intuition: each value defines a constraint
 - Geometric view: in one dimension, <u>lower</u> <u>envelope</u> of arrangement of n quadratics
 - Each rooted at (x,f(x))
 - Related to convex hull in computational geometry



Algorithm for 1D Lower Envelope

- Incrementally add quadratics
 - Keep only those "lower envelope"
 - Maintain ordered list of visible quadratics and the intersections of successive ones
- Consider in left-to-right order
 - Compare new intersection with rightmost quadratic to rightmost existing intersection
 - If to left, hides rightmost quadratic so remove and repeat





Running Time of LE Algorithm

- Consider adding each quadratic just once
 - Intersection and comparison constant time
 - Adding to lists constant time
 - Removing from lists constant time
 - But then need to try again
- Amortized analysis
 - Total number of removals O(n)
 - Each quadratic, once removed, never considered for removal again
- Thus overall running time O(n)

1D L₂² Distance Transform

```
static float *dt(float *f, int n) {
  float *d = new float[n], *z = new float[n];
  int *v = new int[n];
  int k = 0;
 v[0] = 0;
  z[0] = -INF;
  z[1] = +INF;
  for (int q = 1; q <= n-1; q++) {</pre>
    float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))
                 /(2*q-2*v[k]);
    while (s <= z[k]) {</pre>
     k--;
      s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))
             /(2*q-2*v[k]); }
    k++;
    v[k] = q;
    z[k] = s;
    z[k+1] = +INF;
```


DT Values From Intersections

```
k = 0;
for (int q = 0; q <= n-1; q++) {
    while (z[k+1] < q)
        k++;
    d[q] = square(q-v[k]) + f[v[k]];
}
return d;
}</pre>
```

- 2D version easily runs at video rates
- No reason to approximate L₂ distance
 - Simple to implement as well as fast

Distance Transforms in Matching

- Chamfer measure asymmetric
 - Sum of distance transform values
 - "Probe" DT at locations specified by model and sum resulting values
- Hausdorff distance (and generalizations)
 - Max-min distance which can be computed efficiently using distance transform
 - Generalization to quantile of distance transform values more useful in practice
 - Max sensitive to even single outlier

DT and Morphological Dilation

 Dilation operation replaces each point of P with some fixed point set Q

$$-P \oplus Q = U_p U_q p+q$$

- Dilation by a "disc" C^d of radius d replaces each point with a disc
 - A point is in the dilation of P by C^d exactly when the distance transform value is no more than d (for appropriate disc and distance fcn.)
 - $-x \in P \oplus C^d \Leftrightarrow D_P(x) \leq d$

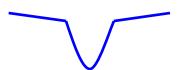
		-	
2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

0	1	0	0
1	1	1	0
1	1	1	0
0	1	0	0

1	1	1	0
1	1	1	1
1	1	1	1
1	1	1	0

Generalizations of DT

- Combination distance functions
 - Robust "truncated quadratic" distance
 - Quadratic for small distances, linear for larger
 - Simply minimum of (weighted) quadratic and linear distance transforms



- DT of arbitrary functions: min_y ||x-y|| +f(y)
 - Exact same algorithms apply
 - Combination of cost function f(y) at each location and distance function
 - Useful for certain energy minimization problems

