CS664 Computer Vision

7. Distance Transforms

Dan Huttenlocher

\ Cornell University

@a2)§ Faculty of Computing and Information Science

Comparing Binary Feature Maps

= Binary “image” specifying feature locations
- In X,y or x,y,scale

= Even small variations will cause maps not
to align precisely

= Distance transforms a natural way to
“blur” feature locations geometrically

= Natural generalization also applies not just
to binary data but to any cost or height
map

é‘f@j@ Cornell University
s

Distance Transform

= Map of distances from any point to nearest
point of some type

— Distances to object boundaries in computer
graphics, robotics and Al

— Distances to image features in computer vision

= Generally used for data on grid
— Pixels or voxels, 2D or 3D
— Related to exact algorithms for Voronoi diagrams

= Efficient algorithms for computing
- Linear in number of pixels, fast in practice

@
1@&=lL C 11 Universit
5%%?2" ornell University

Uses of Distance Transforms

= Image matching and object recognition
— Hausdorff and Chamfer matching
— Skeletonization

o

= Path planning and navigation
- High clearance paths

%f;né)? Cornell University

Uses of Distance Transforms

= Proximity-based matching

— For each point of set A nearest
point of set B

— But not correspondence or
one-to-one matching

— Related to morphological dilation
e Replace each point with disc
= Path planning and obstacle avoidance
— Maximal clearance path

— Re-compute if moving obstacles
e But bound on how fast changes

%f;né)? Cornell University

Distance Transform Formula

= Set of points, P, and measure of distance
DT(P)[x] = min,p dist(x,y)
= For each location x distance to nearest
pointy in P
— Can think of “cones” rooted at each y € P
— Min over all the cones (lower envelope)

é‘f@j@ Cornell University
s

Different Distance Measures

= Euclidean distance (L, norm)
sart((x; —y;)2 + (X3 - y2)2+ ...)

= City block distance (L; norm)
Xy =yl + X - ya| + ..

= (Chessboard distance (L, norm)

max(|x; = y¢l, [X3 = yal, .0)

) 5
I3

Relation to Voronoi Diagram

= Equidistant from two or more points
— Dual of Delaunay triangulation
— Compute in O(nlogn) time (Graham scan)
— Use to efficiently find closest point, O(logn)

é‘f@j@ Cornell University
s

Grid Formulation of Distance Trans.

= Commonly computed on a grid I', for set
of points P c T

DT(P)[x] = min,_ (dist(x,y) + 1p(y))
= Where 1,(y) indicator function for P

- Value of 0 when yeP, « otherwise

— Can think of cone rooted at each I
point of grid, rather than of P

— Cones not at points of P are
infinitely large so don't figure
INto Minimum

N N
F o |o |-
N N
w oo |w

é‘f@j@ Cornell University
s

Nailve Computation

= For each point on the grid, explicitly
consider each point of P and minimize
— For n grid points and m points in P take time
O(mn)
- Note that m is O(n), so O(n2) method
= Not very practical even for moderate size
grids such as images

— Even a low-resolution video frame has about
300K pixels

e About 100 billion distance computations

é‘f@j@ Cornell University
s

Better Methods on Grid

= 1D case, Ly norm: |x; = y¢| + [X5 - V5]
- Two passes:
e Find closest point on left
e Find closest on right if closer than one on left

— Incremental:

e Moving left-to-right, closest point on left either
previous closest point or current point

e Analogous for moving right-to-left

— Can keep track of closest point as well as
distance to it

o Will illustrate distance only, less book-keeping

é‘f@j@ Cornell University
s

L, Distance Transform Algorithm

= Two pass O(n) algorithm for 1D L; norm
(just distance and not source point)

1. Initialize: For all j
D[j] < 1p[]]

2. Forward: For j from 1 up to n-1 110
D[j] « min(D[j],D[j-1]+1)

3. Backward: For j from n-2 down to 0 (9/1

D[j] « min(D[j],D[j+1]+1)

L, Distance Transform

= 2D case analogous to 1D
— Initialization
— Forward and backward pass

e Forward pass adds one to closest above and to
left, takes min with self

e Backward pass analogous below and to right

-

8 |8 [8 18
8 |2 [=]8

8 |8 [F]8
8 |8 |8 18

8 18 |8 18
P |lo o8

NI—‘HS
w [h |8
N [|- o
P oo |+
N [|- o
w [N |w

8 18 [8 |8
8 1@ =18
8 18 |8 |8
8 18 [8 |8

L Distance Transform

= What about Chessboard distance
max([x; = yil, [X3 - y2l) ?

= Same approach of initialization and two
passes

— Now also consider point one away on both
axes

7 =
H

8 |8 |8 (8
8 |o]=8

8 |8 |8 18
8 |8 |8 18

8 |8 [8]8
8 |2 [=]8
8 |8 [—]8
8 |8 [8]8
8 |8 [8]8
P |lo|o|g
P~ |~ |8
CHT O N)
o
P |lo|o |-
o
N NN N

L, Distance Transform

= What about Euclidean distance
sqQrt((x; — y1)? + (X3 - y,)?) ?
= Not linear function of location on grid
— Simple local propagation V2l 1
methods not correct 1]s
= |Local propagation just approximation

— Introduces considerable
error, particularly at larger
distances

— Bigger neighborhood can help
but not fix

é‘f@j@ Cornell University
s

Exact L, Distance Transform

= 1D case doesn’t seem helpful
- Same as L4
— But just saw 2D case not same as L,

= Several quite involved methods
- Linear or O(nlogn) time, but at edge of practical

= Revisit 1D
— Decompose 2D into two 1D transforms
- Yield relatively simple method, though not local

— Requires more advanced way of understanding
running time - amortized analysis

@
1(gg)f) Cornell Universit
5%%?2" ornell University

Squared Distance on 2D Grid

= Consider f(x,y) on grid

— For instance, indicator function for membership
in point set P, 0 or «

= Distance transform
Df(XIY) = rninx’,y’((x_xl)2 + (y_y’)Z + f(X,ly,))
= First term does not depend on y’
= min,((x-x")2 + min,.((y-y")% + f(x",y")))
= PBut then can view as 1D distance transform
restricted to column indexed by X’

= min, ((X-x")2 + Dg,(y))

Approach for L, Distance Transform

= Start with point set on grid
= Initialize to 0, cost function

= Perform 1D transform on columns of cost
function

= Perform 1D transform on rows of result
— Cascade results in each dimension

= Compute square roots if actual distance
needed

— Note, as does not change minima, often more
efficient to leave as squared distance

é‘f@j@ Cornell University
s

Computing 1D L,? Transform Efficiently

= Compute h(x)=min, ((x-x")2+f(x"))
» Tntuition: each value defines a constraint

— Geometric view: in one dimension, lower
envelope of arrangement of n quadratics

e Each rooted at (x,f(x))
— Related to convex hull in computational geometry

é‘f@j@ Cornell University
s

v

{/
7

[= | S —

Algorithm for 1D Lower Envelope

= ITncrementally add quadratics

— Keep only those “lower envelope”

e Maintain ordered list of visible AT
quadratics and the intersections
of successive ones / \

= Consider in left-to-right order

— Compare new intersection with
rightmost quadratic to rightmost
existing intersection

o If to left, hides rightmost
quadratic so remove and repeat

New Rightmost

/[

! ! i
vEl] K] S

Rightmost New

é‘f@j@ Cornell University
S

Running Time of LE Algorithm

= Consider adding each quadratic just once
— Intersection and comparison constant time
— Adding to lists constant time
— Removing from lists constant time
e But then need to try again
= Amortized analysis

— Total number of removals O(n)

e Each quadratic, once removed, never considered
for removal again

= Thus overall running time O(n)

é‘f@j@ Cornell University
s

1D L,% Distance Transform

static float *dt(float *f, Iint n) {

Tloat *d = new Tloat[n], *z = new fTloat[n];
int *v = new int[n];

iInt = 0;

v[0] = O;

z[0] = -INF;

z[1] = +INF;

for (int 1; 9 <= n-1; g++) {

float ((f[g])+square(q))-(fLvk]]1+square(VvI[k])))
/(2*g-2*v[kD);

while (s <= z[K]D {

K--;
s = ((fLal+square(q))-(fLvIkl]l+square(v[kl)))
/(2*q-2*v[K]); }
k++;
vlk] = q;
z[k] = s;
z[k+1] = +INF; }

%f;né)? Cornell University

DT Values From Intersections

k = 0;
for (int g =0; q <= n-1; g++) {
while (z[k+1] < Q)
K++;
, d[g] = square(q-v[k]) + fLvIk]];
return d;
}

= 2D version easily runs at video rates

= No reason to approximate L, distance
- Simple to implement as well as fast

%f;né)? Cornell University

Distance Transforms in Matching

= Chamfer measure — asymmetric

— Sum of distance transform values

e "Probe” DT at locations specified by model and
sum resulting values

= Hausdorff distance (and generalizations)

- Max-min distance which can be computed
efficiently using distance transform

— Generalization to quantile of distance
transform values more useful in practice

e Max sensitive to even single outlier

é‘f@j@ Cornell University
s

DT and Morphological Dilation

= Dilation operation replaces each point of P
with some fixed point set Q

-P®Q=U, U, p+q

= Dilation by a “disc” Cd of radius d replaces
each point with a disc
— A point is in the dilation of P by Cd9 exactly

when the distance transform value is no more
than d (for appropriate disc and distance fcn.)

-XeP®Cd o Dp(x)<d

3

1

2
1
1
2

2
1
1
2

O | | |O

AR

O | | |O

AR

AR

AR
ok |- |o

o |O |o |o

0 2
0 2
1 3

é‘f@j@ Cornell University
s

Generalizations of DT

» Combination distance functions

— Robust “truncated quadratic” distance
e Quadratic for small distances, linear for larger

e Simply minimum of (weighted) quadratic and
linear distance transforms

T\

» DT of arbitrary functions: min, | x-y | +f(y)
— Exact same algorithms apply

— Combination of cost function f(y) at each
location and distance function

o Useful for certain energy minimization problems
Qf@} Cornell University

