
CS664 Computer Vision

7. Distance Transforms

Dan Huttenlocher



2

Comparing Binary Feature Maps

Binary “image” specifying feature locations
– In x,y or x,y,scale

Even small variations will cause maps not 
to align precisely
Distance transforms a natural way to 
“blur” feature locations geometrically
Natural generalization also applies not just 
to binary data but to any cost or height 
map 



3

Distance Transform

Map of distances from any point to nearest 
point of some type
– Distances to object boundaries in computer 

graphics, robotics and AI
– Distances to image features in computer vision

Generally used for data on grid
– Pixels or voxels, 2D or 3D
– Related to exact algorithms for Voronoi diagrams

Efficient algorithms for computing
– Linear in number of pixels, fast in practice



4

Uses of Distance Transforms

Image matching and object recognition
– Hausdorff and Chamfer matching
– Skeletonization

Path planning and navigation
– High clearance paths



5

Uses of Distance Transforms

Proximity-based matching
– For each point of set A nearest 

point of set B
– But not correspondence or 

one-to-one matching
– Related to morphological dilation

• Replace each point with disc

Path planning and obstacle avoidance
– Maximal clearance path
– Re-compute if moving obstacles

• But bound on how fast changes



6

Distance Transform Formula

Set of points, P, and measure of distance
DT(P)[x] = miny∈P dist(x,y)

For each location x distance to nearest 
point y in P
– Can think of “cones” rooted at each y ∈ P

– Min over all the cones (lower envelope)



7

Different Distance Measures

Euclidean distance (L2 norm)
sqrt((x1 – y1)2 + (x2 - y2)2 + … )

City block distance (L1 norm)
|x1 – y1| + |x2 - y2| + …

Chessboard distance (L∞ norm)
max(|x1 – y1|, |x2 - y2|, …)



8

Relation to Voronoi Diagram

Equidistant from two or more points
– Dual of Delaunay triangulation
– Compute in O(nlogn) time (Graham scan)
– Use to efficiently find closest point, O(logn)



9

Grid Formulation of Distance Trans.

Commonly computed on a grid Γ, for set 
of points P ⊆ Γ
DT(P)[x] = miny∈ Γ (dist(x,y) + 1P(y))
Where 1P(y) indicator function for P
– Value of 0 when y∈P, ∞ otherwise

– Can think of cone rooted at each 
point of grid, rather than of P

– Cones not at points of P are 
infinitely large so don’t figure 
into minimum

0
0

11
2 1 2

1 1
2 1 2

3
2
2
3



10

Naïve Computation

For each point on the grid, explicitly 
consider each point of P and minimize
– For n grid points and m points in P take time 

O(mn)
– Note that m is O(n), so O(n2) method

Not very practical even for moderate size 
grids such as images
– Even a low-resolution video frame has about 

300K pixels
• About 100 billion distance computations



11

Better Methods on Grid

1D case, L1 norm: |x1 – y1| + |x2 - y2| 
– Two passes: 

• Find closest point on left
• Find closest on right if closer than one on left

– Incremental:
• Moving left-to-right, closest point on left either 

previous closest point or current point
• Analogous for moving right-to-left 

– Can keep track of closest point as well as 
distance to it
• Will illustrate distance only, less book-keeping



12

L1 Distance Transform Algorithm

Two pass O(n) algorithm for 1D L1 norm
(just distance and not source point)
1. Initialize: For all j

D[j] ← 1P[j]

2. Forward: For j from 1 up to n-1
D[j] ← min(D[j],D[j-1]+1)

3. Backward: For j from n-2 down to 0
D[j] ← min(D[j],D[j+1]+1)

∞ 0 ∞ 0 ∞ ∞ ∞ 0 ∞

∞ 0 1 0 1 2 3 0 1

1 0 1 0 1 2 1 0 1

1 0

0 1



13

L1 Distance Transform

2D case analogous to 1D
– Initialization
– Forward and backward pass

• Forward pass adds one to closest above and to 
left, takes min with self

• Backward pass analogous below and to right

0
0

11
2 1 2

1 1
2 1 2

3
2
2
3

0
0

1∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

0
0

1∞
∞ ∞ ∞

∞ 1
∞ 1 2

∞
2
2
3

s
10

1

0
1

1
s

0
0

∞∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞



14

L∞ Distance Transform

What about Chessboard distance 
max(|x1 – y1|, |x2 - y2|) ?
Same approach of initialization and two 
passes
– Now also consider point one away on both 

axes

0
0

11
1 1 1

1 1
1 1 1

2
2
2
2

0
0

1∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

0
0

1∞
∞ ∞ ∞

∞ 1
∞ 1 1

∞
2
2
2

s
11

1

1
1

1
s

0
0

∞∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞



15

L2 Distance Transform

What about Euclidean distance
sqrt((x1 – y1)2 + (x2 - y2)2 ) ?
Not linear function of location on grid
– Simple local propagation 

methods not correct

Local propagation just approximation
– Introduces considerable 

error, particularly at larger 
distances

– Bigger neighborhood can help
but not fix

s
1√2

1



16

Exact L2 Distance Transform

1D case doesn’t seem helpful
– Same as L1

– But just saw 2D case not same as L1

Several quite involved methods
– Linear or O(nlogn) time, but at edge of practical

Revisit 1D
– Decompose 2D into two 1D transforms
– Yield relatively simple method, though not local
– Requires more advanced way of understanding 

running time – amortized analysis



17

Squared Distance on 2D Grid

Consider f(x,y) on grid
– For instance, indicator function for membership 

in point set P, 0 or ∞

Distance transform
Df(x,y) = minx′,y′((x-x′)2 + (y-y′)2 + f(x′,y′))
First term does not depend on y’
= minx′((x-x′)2 + miny′((y-y′)2 + f(x′,y′)))
But then can view as 1D distance transform 
restricted to column indexed by x’
= minx′((x-x′)2 + Df|x’(y)) 



18

Approach for L2 Distance Transform

Start with point set on grid
Initialize to 0,∞ cost function
Perform 1D transform on columns of cost 
function
Perform 1D transform on rows of result
– Cascade results in each dimension

Compute square roots if actual distance 
needed
– Note, as does not change minima, often more 

efficient to leave as squared distance 



19

Computing 1D L2
2 Transform Efficiently 

Compute h(x)=minx’ ((x-x’)2+f(x’))
Intuition: each value defines a constraint
– Geometric view: in one dimension, lower

envelope of arrangement of n quadratics 
• Each rooted at (x,f(x))

− Related to convex hull in computational geometry



20

Algorithm for 1D Lower Envelope

Incrementally add quadratics
– Keep only those “lower envelope”

• Maintain ordered list of visible 
quadratics and the intersections 
of successive ones

Consider in left-to-right order
– Compare new intersection with 

rightmost quadratic to rightmost 
existing intersection
• If to left, hides rightmost 

quadratic so remove and repeat
NewRightmost

New Rightmost



21

Running Time of LE Algorithm

Consider adding each quadratic just once
– Intersection and comparison constant time
– Adding to lists constant time
– Removing from lists constant time

• But then need to try again

Amortized analysis
– Total number of removals O(n)

• Each quadratic, once removed, never considered 
for removal again

Thus overall running time O(n)



22

1D L2
2 Distance Transform

static float *dt(float *f, int n) {
float *d = new float[n], *z = new float[n];
int *v = new int[n];
int k = 0;
v[0] = 0;
z[0] = -INF;
z[1] = +INF;
for (int q = 1; q <= n-1; q++) {
float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))

/(2*q-2*v[k]);
while (s <= z[k]) {
k--;
s  = ((f[q]+square(q))-(f[v[k]]+square(v[k])))

/(2*q-2*v[k]);    }
k++;
v[k] = q;
z[k] = s;
z[k+1] = +INF; }



23

DT Values From Intersections

k = 0;
for (int q = 0; q <= n-1; q++) {
while (z[k+1] < q)
k++;

d[q] = square(q-v[k]) + f[v[k]];
}
return d;

}

2D version easily runs at video rates
No reason to approximate L2 distance
– Simple to implement as well as fast



24

Distance Transforms in Matching

Chamfer measure – asymmetric
– Sum of distance transform values

• “Probe” DT at locations specified by model and 
sum resulting values

Hausdorff distance (and generalizations)
– Max-min distance which can be computed 

efficiently using distance transform
– Generalization to quantile of distance 

transform values more useful in practice
• Max sensitive to even single outlier



25

DT and Morphological Dilation

Dilation operation replaces each point of P 
with some fixed point set Q
– P ⊕ Q = Up Uq p+q 

Dilation by a “disc” Cd of radius d replaces 
each point with a disc
– A point is in the dilation of P by Cd exactly 

when the distance transform value is no more 
than d (for appropriate disc and distance fcn.)

– x ∈ P ⊕ Cd ⇔ DP(x) ≤ d

0
0

11
2 1 2

1 1
2 1 2

3
2
2
3

1
1

11
1 1 1

1 1
1 1 1

0
1
1
0

1
1

11
0 1 0

1 1
0 1 0

0
0
0
0



26

Generalizations of DT

Combination distance functions
– Robust “truncated quadratic” distance

• Quadratic for small distances, linear for larger
• Simply minimum of (weighted) quadratic and 

linear distance transforms

DT of arbitrary functions: miny⎟⎜x-y⎟⎜+f(y) 
– Exact same algorithms apply
– Combination of cost function f(y) at each 

location and distance function
• Useful for certain energy minimization problems


