CS664 Computer Vision

7. Distance Transforms

Dan Huttenlocher

Comparing Binary Feature Maps

- Binary "image" specifying feature locations
- In x, y or $x, y, s c a l e$
- Even small variations will cause maps not to align precisely
- Distance transforms a natural way to "blur" feature locations geometrically
- Natural generalization also applies not just to binary data but to any cost or height map

Distance Transform

- Map of distances from any point to nearest point of some type
- Distances to object boundaries in computer graphics, robotics and AI
- Distances to image features in computer vision
- Generally used for data on grid
- Pixels or voxels, 2D or 3D
- Related to exact algorithms for Voronoi diagrams
- Efficient algorithms for computing
- Linear in number of pixels, fast in practice

Uses of Distance Transforms

- Image matching and object recognition
- Hausdorff and Chamfer matching
- Skeletonization

- Path planning and navigation
- High clearance paths

Uses of Distance Transforms

- Proximity-based matching
- For each point of set A nearest point of set B
- But not correspondence or one-to-one matching
- Related to morphological dilation
- Replace each point with disc
- Path planning and obstacle avoidance
- Maximal clearance path
- Re-compute if moving obstacles
- But bound on how fast changes

Distance Transform Formula

- Set of points, P, and measure of distance $\operatorname{DT}(P)[x]=\min _{y \in P} \operatorname{dist}(x, y)$
- For each location x distance to nearest point y in P
- Can think of "cones" rooted at each $y \in P$
- Min over all the cones (lower envelope)

Different Distance Measures

- Euclidean distance (L_{2} norm)

$$
\operatorname{sqrt}\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots\right)
$$

- City block distance (L_{1} norm)

$$
\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|+\ldots
$$

- Chessboard distance (L_{∞} norm)

$$
\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|, \ldots\right)
$$

Relation to Voronoi Diagram

- Equidistant from two or more points
- Dual of Delaunay triangulation
- Compute in O(nlogn) time (Graham scan)
- Use to efficiently find closest point, O(logn)

Grid Formulation of Distance Trans.

- Commonly computed on a grid Γ, for set of points $\mathrm{P} \subseteq \Gamma$
$D T(P)[x]=\min _{y \in \Gamma}\left(\operatorname{dist}(x, y)+1_{p}(y)\right)$
- Where $1_{P}(y)$ indicator function for P
- Value of 0 when $y \in P, \infty$ otherwise
- Can think of cone rooted at each point of grid, rather than of P

- Cones not at points of P are infinitely large so don't figure into minimum

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

Naïve Computation

- For each point on the grid, explicitly consider each point of P and minimize
- For n grid points and m points in P take time O(mn)
- Note that m is $O(n)$, so $O\left(n^{2}\right)$ method
- Not very practical even for moderate size grids such as images
- Even a low-resolution video frame has about 300K pixels
- About 100 billion distance computations

Better Methods on Grid

- 1D case, L_{1} norm: $\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$
- Two passes:
- Find closest point on left
- Find closest on right if closer than one on left
- Incremental:
- Moving left-to-right, closest point on left either previous closest point or current point
- Analogous for moving right-to-left
- Can keep track of closest point as well as distance to it
- Will illustrate distance only, less book-keeping

\mathbf{L}_{1} Distance Transform Algorithm

- Two pass $O(n)$ algorithm for $1 D L_{1}$ norm (just distance and not source point)

1. Initialize: For all j
$D[j] \leftarrow 1_{p}[j]$
2. Forward: For j from 1 up to $\mathrm{n}-1$ $\mathrm{D}[\mathrm{j}] \leftarrow \min (\mathrm{D}[\mathrm{j}], \mathrm{D}[\mathrm{j}-1]+1)$
3. Backward: For j from $\mathrm{n}-2$ down to 0 0|1 $D[j] \leftarrow \min (D[j], D[j+1]+1)$

\[

\]

\mathbf{L}_{1} Distance Transform

- 2D case analogous to 1D
- Initialization
- Forward and backward pass
- Forward pass adds one to closest above and to left, takes min with self
- Backward pass analogous below and to right

s	1
1	0

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

\mathbf{L}_{∞} Distance Transform

- What about Chessboard distance $\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$?
- Same approach of initialization and two passes
- Now also consider point one away on both axes

1	1
1	s
s	1
1	1

1	1	1	2
1	0	1	2
1	0	1	2
1	1	1	2

L_{2} Distance Transform

- What about Euclidean distance

$$
\operatorname{sqrt}\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right) ?
$$

- Not linear function of location on grid
- Simple local propagation methods not correct

$\sqrt{ } 2$	1
1	s

- Local propagation just approximation
- Introduces considerable error, particularly at larger distances
- Bigger neighborhood can help but not fix

Exact $\mathbf{L}_{\mathbf{2}}$ Distance Transform

- 1D case doesn't seem helpful
- Same as L_{1}
- But just saw 2D case not same as L_{1}
- Several quite involved methods
- Linear or O(nlogn) time, but at edge of practical
- Revisit 1D
- Decompose 2D into two 1D transforms
- Yield relatively simple method, though not local
- Requires more advanced way of understanding running time - amortized analysis

Squared Distance on 2D Grid

- Consider $f(x, y)$ on grid
- For instance, indicator function for membership in point set $P, 0$ or ∞
- Distance transform

$$
D_{f}(x, y)=\min _{x^{\prime}, y^{\prime}}\left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+f\left(x^{\prime}, y^{\prime}\right)\right)
$$

- First term does not depend on y^{\prime}

$$
=\min _{x^{\prime}}\left(\left(x-x^{\prime}\right)^{2}+\min _{y^{\prime}}\left(\left(y-y^{\prime}\right)^{2}+f\left(x^{\prime}, y^{\prime}\right)\right)\right)
$$

- But then can view as 1D distance transform restricted to column indexed by x^{\prime}
$=\min _{x^{\prime}}\left(\left(x-x^{\prime}\right)^{2}+D_{f \mid x^{\prime}}(y)\right)$

Approach for $\mathbf{L}_{\mathbf{2}}$ Distance Transform

- Start with point set on grid
- Initialize to $0, \infty$ cost function
- Perform 1D transform on columns of cost function
- Perform 1D transform on rows of result - Cascade results in each dimension
- Compute square roots if actual distance needed
- Note, as does not change minima, often more efficient to leave as squared distance

Computing 1D $\mathbf{L}_{\mathbf{2}}{ }^{\mathbf{2}}$ Transform Efficiently

- Compute $h(x)=\min _{x^{\prime}}\left(\left(x-x^{\prime}\right)^{2}+f\left(x^{\prime}\right)\right)$
- Intuition: each value defines a constraint
- Geometric view: in one dimension, lower envelope of arrangement of n quadratics
- Each rooted at ($x, f(x)$)
- Related to convex hull in computational geometry

Algorithm for 1D Lower Envelope

- Incrementally add quadratics
- Keep only those "lower envelope"
- Maintain ordered list of visible quadratics and the intersections of successive ones
- Consider in left-to-right order

- Compare new intersection with rightmost quadratic to rightmost existing intersection
- If to left, hides rightmost quadratic so remove and repeat

Running Time of LE Algorithm

- Consider adding each quadratic just once
- Intersection and comparison constant time
- Adding to lists constant time
- Removing from lists constant time
- But then need to try again
- Amortized analysis
- Total number of removals O(n)
- Each quadratic, once removed, never considered for removal again
- Thus overall running time $O(n)$

1D $\mathbf{L}_{\mathbf{2}}{ }^{\mathbf{2}}$ Distance Transform

```
static float *dt(float *f, int n) {
    float *d = new float[n], *z = new float[n];
    int *v = new int[n];
    int k = 0;
    v[0] = 0;
    z[0] = -INF;
    z[1] = +INF;
    for (int q = 1; q <= n-1; q++) {
    float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))
        /(2*q-2*v[k]);
    while (s <= z[k]) {
        k--;
        s=((f[q]+square(q))-(f[v[k]]+square(v[k])))
                        /(2*q-2*v[k]); }
    k++;
    v[k] = q;
    z[k] = s;
    z[k+1] = +INF; }
```


DT Values From Intersections

```
k = 0;
    for (int q = 0; q <= n-1; q++) {
        while (z[k+1] < q)
            k++;
        d[q] = square(q-v[k]) + f[v[k]];
    }
    return d;
}
```

- 2D version easily runs at video rates
- No reason to approximate L_{2} distance
- Simple to implement as well as fast

Distance Transforms in Matching

- Chamfer measure - asymmetric
- Sum of distance transform values
- "Probe" DT at locations specified by model and sum resulting values
- Hausdorff distance (and generalizations)
- Max-min distance which can be computed efficiently using distance transform
- Generalization to quantile of distance transform values more useful in practice
- Max sensitive to even single outlier

DT and Morphological Dilation

- Dilation operation replaces each point of P with some fixed point set Q
$-P \oplus Q=U_{p} U_{q} p+q$
- Dilation by a "disc" Cd of radius d replaces each point with a disc
- A point is in the dilation of P by C^{d} exactly when the distance transform value is no more than d (for appropriate disc and distance fon.)

Generalizations of DT

- Combination distance functions
- Robust "truncated quadratic" distance
- Quadratic for small distances, linear for larger
- Simply minimum of (weighted) quadratic and linear distance transforms

- DT of arbitrary functions: $\min _{y}\|x-y\|+f(y)$
- Exact same algorithms apply
- Combination of cost function $f(y)$ at each location and distance function
- Useful for certain energy minimization problems

