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Local Invariant Features

Similarity- and affine-invariant keypoint
detection
– Sparse using non-maximum suppression
– Stable under lighting and viewpoint changes

• Recall 2D affine transform corresponds to 3D 
motion of plane under weak perspective

Similarity- and affine-invariant, or at least 
stable, descriptors for keypoints
– Enable accurate matching of keypoints between 

images
• Object recognition, image registration
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Local Feature Detectors

Harris corner detector covered earlier
– And related detectors such as KLT, estimates of 

image derivatives aggregated over local regions

Based on magnitudes of eigenvalues of 
Hessian matrix (partial second derivatives)
– Aggregated over window (weighted)

More recent detectors build on this to gain 
varying degrees of invariance
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Geometric Invariance

Local detectors sensitive to geometric 
transformations
Several investigations of scale invariance
– Multi-scale Harris corners
– Harris-Laplacian
– SIFT (Scale Invariant Feature Transform)

Some investigations of similarity and 
affine invariance
– Tradeoff of degree of invariance and amount of 

information in descriptors
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Scale Invariant Detection

Kernels for determining scale
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Scale-Space Octaves

Each octave is 
doubling of scale
– Halve image 

dimensions

Within octave 
several scales
– In SIFT paper 

Lowe uses 3
– Same dimension 

for all images 
within octaveLowe advocated DoG as efficient
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Determining Scales per Octave

More scales per octave seems like should 
perform better, but get slower
– More densely covering the scale space

Lowe found that more than 3 scales per 
octave did not help
– Measured by repeatability

of features as image
distorted

– Also by ability to retrieve
features using descriptors
(yet to be defined)
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Scale Space Extrema

Non-maximum suppression both spatially 
and in scale
Compare magnitude at
given cell to all 26
neighbors
– More positive or more

negative

On average not many
comparisons per cell
As with edges, NMS alone not enough
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Localizing SIFT Keypoints

Better results by interpolating than by 
taking center of cell as location
– Fit quadratic to surrounding points 

Taylor expansion around point
– Where D is difference of Gaussian

Offset of extremum as location 
– Use finite differences
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Selecting Good SIFT Keypoints

Low contrast extrema discarded
– Analogous to magnitude constraint in edge and 

corner detection

Edge-like extrema also discarded
– Using similar analysis to Harris corner detector
– Eigenvalues α, β of Hessian 

proportional to principal curvature
– Use trace and determinant

to avoid computing square
roots

– Threshold (Lowe uses r=10)
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SIFT Feature Example

Initial features 
(832)
– Scale indicated

by length of
vector

Low contrast 
removed (729)

Low curvature 
removed (536)
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Scale Invariant Detectors
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Find local max of
– Difference of 

Gaussians in space 
and scale

Harris-Laplacian
Find local max of
– Harris corner 

detector in space 
(image coordinates)

– Laplacian in scale
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Scale Invariant Detectors

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

Experimental evaluation of detectors 
w.r.t. scale change

Repeatability rate:
# correspondences

# possible correspondences
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Scale Invariant Detection: Summary

Given: two images of the same scene with a 
scale difference between them
Goal: find the same interest points 
independently in each image
Solution: search for maxima of suitable 
functions in scale and in space (over the 
image)

Methods: 
1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over 

scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space
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SIFT Orientation Invariance

Determine orientation explicitly and 
normalize to canonical orientation
Other alternative is detector that is itself 
invariant to orientation
– But processing of image for such a detector 

removes more information
– Recall discussion of image transformations

Location and scale invariant detectors
– In practice affine invariant because use extrema
– Rotation or linear “insensitive” descriptors
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SIFT Orientation Assignment

Measure orientation and magnitude in 
closest scale image

Form orientation histogram from region 
around keypoint
– Using Gaussian weighting with sigma 1.5x scale
– And weighting based on gradient magnitude

Note such operations fast using box filtering 
and pre-computation
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SIFT Orientation Assignment

Orientation determined by 
largest peak
Assign second orientation if 
second peak at least .8 height
– About 15% of keypoints have 

two orientations

Parabolic fit to three values 
around peak to interpolate 
orientation

0 2π
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SIFT Descriptor

Histogram gradient information over small 
local areas
– Provide some measure of invariance to small 

changes in position

Weighted both by magnitude and using 
Gaussian from center
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SIFT Descriptor

8 orientations and 4x4 array computed by 
histogramming over 16x16 image region
– 128 dimensional feature vector

Illustration shows 2x2 array and 8x8 region
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SIFT Matching Example

Example objects in cluttered environment
– Rectangle around detected objects based on 

model images at left
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SIFT Matching Results

Empirically found to have good performance 
under range of transformations
– Rotation, scale, intensity change and small affine 

transformations

Scale = 2.5
Rotation = 450
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Affine invariant detection

Above considered:
Similarity transform (rotation + uniform 
scale)

• Now go on to:
Affine transform (rotation + non-
uniform scale)
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Affine invariant detection

Harris-Affine [Mikolajczyk & Schmid, 
IJCV04]:
Use Harris moment matrix to select 
dominant directions and anisotropy
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Affine invariant detection

Matching Widely Separated Views Based on Affine 
Invariant Regions, T. TUYTELAARS and L. VAN 
GOOL, IJCV 2004
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Affine invariant detection

Take a local intensity extremum as initial point
Go along every ray starting from this point and stop 
when extremum of function  f is reached
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points along the ray

• We will obtain approximately 
corresponding regions

Remark: search for scale in 
every direction
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Affine invariant detection

The regions found may not exactly correspond, so we 
approximate them with ellipses

• Geometric Moments: 

2

( , )p q
pqm x y f x y dxdy= ∫ Fact: moments mpq uniquely 

determine the function f

Taking  f to be the characteristic function of a region 
(1 inside, 0 outside), moments of orders up to 2 allow 
to approximate the region by an ellipse

This ellipse will have the same moments of 
orders up to 2 as the original region
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Affine invariant detection

Algorithm summary (detection of affine 
invariant region):
– Start from a local intensity extremum point
– Go in every direction until the point of extremum of 

some function  f
– Curve connecting the points is the region boundary
– Compute geometric moments of orders up to 2 for this 

region
– Replace the region with ellipse
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Segment the image into regions of different textures (by a 
non-invariant method)
Compute matrix M (same as in 
Harris detector) over these 
regions

This matrix defines the ellipse

2

2
,

( , ) x x y

x y x y y

I I I
M w x y

I I I
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

[ ], 1
x

x y M
y
⎡ ⎤

=⎢ ⎥
⎣ ⎦

• Regions described by these ellipses are 
invariant under affine transformations

• Find affine normalized frame
• Compute rotation invariant descriptor

Affine Invariant Texture Descriptor
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Feature matching

Exhaustive search
– for each feature in one image, look at all the 

other features in the other image(s)

Hashing
– compute a short descriptor from each feature 

vector, or hash longer descriptors (randomly)

Nearest neighbor techniques
– k-trees and their variants (Best Bin First)
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Locality sensitive hashing
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Nearest neighbor techniques

k-D tree
and

Best Bin
First
(BBF)

Indexing Without Invariants in 3D Object Recognition, Beis and Lowe, PAMI’99


