

The Gradient ■ Direction of most rapid change | VI = (∂I/∂x, 0) | VI = (0, ∂I/∂y) | VI = (∂I/∂x, ∂I/∂y) ■ Gradient direction is atan(∂I/∂y,∂I/∂x) | Normal to edge ■ Strength of edge given by grad magnitude | Often use squared magnitude to avoid computing square roots

Discrete Gradient

- Partial derivatives estimated for boundaries between adjacent pixels
 - E.g., pixel and next one in x,y directions
- Yields estimates at different points in each direction if use x,y directions

- Generally use 45° directions to solve this
 - Magnitude fine, but gradient orientation needs to be rotated to correspond to axes

Estimating Discrete Gradient Gradient at u.v with 45° axes

- - Down-right: $\partial I/\partial x' \approx I[u+1,v+1]-I[u,v]$
 - Down-left: $\partial I/\partial y' \approx I[u,v+1]-I[u+1,v]$
- Handle image border, e.g., no change

Discrete Laplacian

- Laplacian at u,v
 - $\partial^2 I/\partial x^2 \,=\, I[u\text{-}1,v]\text{-}2I[u,v] + I[u+1,v]$ $\partial^{2}I/\partial y^{2} = I[u,v-1]-2I[u,v]+I[u,v+1]$
 - $\nabla^2 I$ is sum of directional second derivatives:
- I[u-1,v]+I[u+1,v]+I[u,v-1]+I[u,v+1]-4I[u,v]
- Can view as 3x3 mask or kernel
 - Value at u,v given by sum of product with I
- Grid yields poor rotational symmetry

Local Edge Detectors - Convolution

- Historically several local edge operators based on derivatives
 - Simple local weighting over small set of pixels
- For example Sobel operator
 - First derivatives in x and y
 - Weighted sum
 - 3x3 mask for symmetry
 - Today can do better with larger masks, fast Today can au perior algorithms, faster computers

Problems With Local Detectors

 1D example illustrates effect of noise (variation) on local measures

Convolution and Derivatives

Smooth and then take derivative

Derivatives and Convolutions Another useful identity for convolution is $d/dx(A \star B) = (d/dx A) \star B = A \star (d/dx B)$ - Use to skip one step in edge detection

Derivatives Using Convolution

- When smoothing all weights of mask h are positive
 - Sum to 1
 - Maximum weight at center of mask
- For derivatives have negative weights
 - Compute differences (derivatives)
 - E.g., Laplacian $H = \begin{bmatrix} 1 & 4 & 1 \\ 4 & 20 & 4 \end{bmatrix}$
 - $-H \star F = \nabla^2 F$
 - Sum to 0

Linear Operators

- Linear shift invariant (LSI) system
 - Given a "black box" h: f → h → g
 - Linearity: $af_1 + bf_2 \rightarrow \boxed{h} \rightarrow ag_1 + bg_2$
 - Shift invariance: f(x-u) → h → g(x-u)
- Convolution with arbitrary h equivalent to these properties
 - Beyond this course to show it
- Linearity is "simple to understand" but real world not always linear
 - E.g., saturation effects

Gradient Magnitude

 Also use smoothed image $\|\nabla(\mathbf{I} \star \mathbf{h}_{\mathbf{g}})\| = ((\partial(\mathbf{I} \star \mathbf{h}_{\mathbf{g}})/\partial \mathbf{x})^2 + (\partial(\mathbf{I} \star \mathbf{h}_{\mathbf{g}})/\partial \mathbf{y})^2)^{.5}$

What Makes Good Edge Detector

- Goals for an edge detector
 - Minimize probability of multiple detection
 - · Two pixels classified as edges corresponding to single underlying edge in image
 - Minimize probability of false detection
 - Minimize distance between reported edge and true edge location
- Canny analyzes in detail 1D step edge
 - Shows that derivative of Gaussian is optimal with respect to above criteria
 - Analysis does not extend easily to 2D

Canny Edge Detector

- Based on gradient magnitude and direction of Gaussian smoothed image
 - Magnitude: $\|\nabla(G_{\sigma} \star I)\|$
 - Direction (unit vector): $\nabla(G_{\sigma} \star I) / \|\nabla(G_{\sigma} \star I)\|$
- Ridges in gradient magnitude
 - Peaks in direction of gradient (normal to edge) but not along edge
- Hysteresis mechanism to threshold strong
 - Ridge pixel above lo threshold
 - Connected via ridge to pixel above hi threshold

Canny Edge Definition

- Let $(\delta_{x}, \delta_{y}) = \nabla(G_{\sigma} \star I) / \|\nabla(G_{\sigma} \star I)\|$ Note compute without explicit square root
- Let $m = \|\nabla(G_{\sigma} \star I)\|^2$
- Non-maximum suppression (NMS)
 - $m(x,y) > m(x+\delta_{\mathbf{x}}(x,y),y+\delta_{\mathbf{v}}(x,y))$
 - $m(x,y) \ge m(x-\delta_{\mathbf{x}}(x,y),y-\delta_{\mathbf{v}}(x,y))$
 - Select "ridge points"
- Still leaves many candidate edge pixels
 - $-E.g., \sigma=1$

Canny Thresholding

- Two level thresholding of candidate edge pixels (those that survive NMS)
 - Above lo and connected to pixel above hi
- Start by keeping (classifying as edges) all candidates above hi threshold
 - Recursively if pixel above lo threshold and adjacent to an edge pixel keep it
- Perform recursion using bfs/dfs

- E.g., σ =1, lo=5, hi=10 and lo=10, hi=20

Multiscale Edges

- Multi-scale image
 - $I(x,y,\sigma) = I(x,y) \star G_{\sigma}(x,y)$ Extract edges at across scales
 - Notion of scale-space introduced by Witkin

Scale Space

- As scale increases
 - edge position can change
 - edges can disappear
 - new edges are not created
- Important to consider different scales
 - Or know certain scale is important a priori

25