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Several Causes of Edges

= Sudden changes in various properties
of scene can lead to intensity edges

— Scene changes result in changes of image
brightness/color

‘:.;3__\ Change in surface normal
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Edge Detection

Convert a gray

or color image

into set of

curves

— Represented as
binary image

= Capture

properties

of shapes

Detecting Edges

Seek sudden changes in intensity
— Various derivatives of image
Idealized continuous image 1(X,y)
= Gradient (first derivative), vector valued
VI = (01/0x, ol/dy)
= Squared gradient magnitude
Ivilz= (a1/6x)2 + (a1/0y)?
— Avoid computing square root

= Laplacian (second derivative)
V2l = &21/0x? + 821/0y?

The Gradient

= Direction of most rapid change

I'l = (@ox, 0) _T_ '\

VI = (0, al/dy)
VI = (al/ox, 1/dy)

= Gradient direction is atan(dl/oy,ol/0x)
— Normal to edge
= Strength of edge given by grad magnitude

— Often use squared magnitude to avoid
computing square roots
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Finite Differences

= Images are digitized

— ldealized continuous underlying function 1(x,y)
realized as discrete values on a grid I[u,V]

= Approximations to derivatives (1D)
dF/dx = F[u+1] — F[u]
d2F/dx2 =~ F[u-1] — 2F[u] + F[u+1]
dF: edge at extremum
[2[2]-2[11]-o[-1-1]12[-2] ~ d?F: edge at zero crossing

= First derivative shifts grid
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Discrete Gradient

= Partial derivatives estimated for
boundaries between adjacent pixels
— E.g., pixel and next one in x,y directions

* Yields estimates at different points in each
direction if use x,y directions
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= Generally use 45° directions to solve this

— Magnitude fine, but gradient orientation needs
to be rotated to correspond to axes
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Discrete Laplacian

= Laplacian at u,v
021/0x? = I[u-1,v]-21[u,v]+I[u+1,v]
21/6y? = I[u,v-1]-21[u,v]+I[u,v+1]
V2] is sum of directional second derivatives:
1[u-1,v]+I[u+1,v]+I[u,v-1]+I[u,v+1]-41[u,V]

= Can view as 3x3 mask or kernel
— Value at u,v given by sum of product with |
* Grid yields poor rotational symmetry
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Problems With Local Detectors

= 1D example illustrates effect of noise
(variation) on local measures
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Estimating Discrete Gradient

= Gradient at u,v with 45° axes
— Down-right: 01/0x’ = 1[u+1,v+1]-1[u,V]
— Down-left: ol/6y’ ~ I[u,v+1]-1[u+1,v]
= Handle image border, e.g., no change
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Local Edge Detectors - Convolution

= Historically several local edge operators
based on derivatives
— Simple local weighting over small set of pixels
= For example Sobel operator
— First derivatives in x and y
— Weighted sum
— 3x3 mask for symmetry

— Today can do better with larger masks, fast

algorithms, faster computer:
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Convolution and Derivatives

= Smooth and then take derivative
— 1D example
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Derivatives and Convolutions

= Another useful identity for convolution is
d/dx(A*B)= (d/dx A)*B = A% (d/dx B)
— Use to skip one step in iq.gxe detection
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Derivatives Using Convolution

= When smoothing all weights of mask h are
positive
—Sumto 1l
— Maximum weight at center of mask
= For derivatives have negative weights
— Compute differences (derivatives)

— i = [1]4]|1
E.g., Laplacian H 1ad

—H%F = V2F 1lal1
—Sum to O

Area of Support for Derivative Operators

= Directional first derivatives and second
derivative (Laplacian) of Gaussian

— Sigma controls scale, larger yields fewer edges

Derivative of Gaussian Laplacian of Gaussian
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Approximation to Laplacian of Gaussian

Gaussian
Laplacian of Gaussian
Impulse

(A*G)-(AX1) = A% (G-1) ~ (V2G)*A = V2(A%G)

Derivatives and Convolution

= Difference of image and smoothed version

. Difference
Original Smoothed (brightened)

Linear Operators

= Linear shift invariant (LSI) system
— Given a “black box” h: f%* g

— Linearity: af;+bf,—~| h |~ ag,+bg,

— Shift invariance: f(x-u) ”* g(x-u)
= Convolution with arbitrary h equivalent to
these properties
— Beyond this course to show it
= Linearity is “simple to understand” but
real world not always linear
E.g., saturation effects




Gradient Magnitude

= Also use smoothed image
Ivaxhy) | = ((a(1%hy)/ex)2 + (8(1%h,)/dy)?)S

Canny Edge Detector

= Based on gradient magnitude and direction
of Gaussian smoothed image
— Magnitude: |v(G,*1) |
— Direction (unit vector): V(G *1) /[ V(G *1) |

* Ridges in gradient magnitude

— Peaks in direction of gradient (normal to edge)
but not along edge

= Hysteresis mechanism to threshold strong
edges
— Ridge pixel above lo threshold
— Connected via ridge to pixel above hi threshold

Canny Thresholding

= Two level thresholding of candidate edge
pixels (those that survive NMS)
— Above lo and connected to pixel above hi

= Start by keeping (classifying as edges) all
candidates above hi threshold

— Recursively if pixel above
lo threshold and adjacent
to an edge pixel keep it

= Perform recursion
using bfs/dfs

— E.g., 0=1, lo=5, hi=10 and lo=10, hi=20
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What Makes Good Edge Detector

= Goals for an edge detector

— Minimize probability of multiple detection

= Two pixels classified as edges corresponding to
single underlying edge in image

— Minimize probability of false detection
— Minimize distance between reported edge and
true edge location
= Canny analyzes in detail 1D step edge

— Shows that derivative of Gaussian is optimal
with respect to above criteria

— Analysis does not extend easily to 2D

* Let (8,,8,) = V(G,x1) /| V(G x|

= Non-maximum suppression (NMS)

= Still leaves many

Canny Edge Definition

— Note compute without explicit square root
Let m = [ V(G,x1) |2

= m(X,y) >m(x+35,(X,y),y+3,(X.,y))
—m(X,y) 2 M(X-8,(X,Y),y-5,(x,y))
— Select “ridge points”

candidate edge pixels
—E.g., 0=1
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Multiscale Edges

Multi-scale image
I(x,y,0) = 1(x,y) * G,(x,y)
Extract edges at across scales
— Notion of scale-space introduced by Witkin
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Scale Space

= As scale increases
— edge position can change
— edges can disappear
— new edges are not created ﬂ
1
= Important to consider \
different scales Jmmm

— Or know certain scale is
important a priori
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