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Edge Detection 

Convert a gray 
or color image 
into set of 
curves
– Represented as 

binary image

Capture 
properties 
of shapes
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Several Causes of Edges

Change in depth

Change in surface marking

Change in illumination

Change in surface normal

Sudden changes in various properties 
of scene can lead to intensity edges
– Scene changes result in changes of image 

brightness/color
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Detecting Edges

Seek sudden changes in intensity
– Various derivatives of image

Idealized continuous image I(x,y)
Gradient (first derivative), vector valued

∇I = (∂I/∂x, ∂I/∂y)
Squared gradient magnitude

⎟⎜∇I⎟⎜2 = (∂I/∂x)2 + (∂I/∂y)2

– Avoid computing square root

Laplacian (second derivative)
∇2I = ∂2I/∂x2 + ∂2I/∂y2
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The Gradient

Direction of most rapid change

Gradient direction is atan(∂I/∂y,∂I/∂x)
– Normal to edge

Strength of edge given by grad magnitude
– Often use squared magnitude to avoid 

computing square roots

∇I = (∂I/∂x, 0)

∇I = (0, ∂I/∂y)
∇I = (∂I/∂x, ∂I/∂y)
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Images are digitized
– Idealized continuous underlying function I(x,y) 

realized as discrete values on a grid I[u,v]

Approximations to derivatives (1D)
dF/dx ≈ F[u+1] – F[u]
d2F/dx2 ≈ F[u-1] – 2F[u] + F[u+1]

First derivative shifts grid

Finite Differences
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-2 2 -2 11 -9 -1 -11 12 -2

dF: edge at extremum

d2F: edge at zero crossing
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Partial derivatives estimated for 
boundaries between adjacent pixels
– E.g., pixel and next one in x,y directions

Yields estimates at different points in each 
direction if use x,y directions

Generally use 45° directions to solve this
– Magnitude fine, but gradient orientation needs 

to be rotated to correspond to axes  

Discrete Gradient
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Estimating Discrete Gradient

Gradient at u,v with 45° axes
– Down-right: ∂I/∂x’ ≈ I[u+1,v+1]-I[u,v]
– Down-left: ∂I/∂y’ ≈ I[u,v+1]-I[u+1,v]

Handle image border, e.g., no change
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Discrete Laplacian

Laplacian at u,v
∂2I/∂x2 = I[u-1,v]-2I[u,v]+I[u+1,v]
∂2I/∂y2 = I[u,v-1]-2I[u,v]+I[u,v+1]
∇2I is sum of directional second derivatives:
I[u-1,v]+I[u+1,v]+I[u,v-1]+I[u,v+1]-4I[u,v]

Can view as 3x3 mask or kernel
– Value at u,v given by sum of product with I

Grid yields poor rotational symmetry
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Local Edge Detectors - Convolution

Historically several local edge operators 
based on derivatives
– Simple local weighting over small set of pixels

For example Sobel operator
– First derivatives in x and y
– Weighted sum
– 3x3 mask for symmetry
– Today can do better with larger masks, fast 

algorithms, faster computers
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Problems With Local Detectors

1D example illustrates effect of noise 
(variation) on local measures
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Convolution and Derivatives

Smooth and then take derivative
– 1D example
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Derivatives and Convolutions

Another useful identity for convolution is 
d/dx(A B)= (d/dx A) B = A (d/dx B)
– Use to skip one step in edge detection
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Area of Support for Derivative Operators

Directional first derivatives and second 
derivative (Laplacian) of Gaussian
– Sigma controls scale, larger yields fewer edges

Laplacian of GaussianDerivative of Gaussian
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Derivatives Using Convolution

When smoothing all weights of mask h are 
positive
– Sum to 1
– Maximum weight at center of mask 

For derivatives have negative weights
– Compute differences (derivatives)
– E.g., Laplacian H =
– H F = ∇2F

– Sum to 0

1
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Derivatives and Convolution

Difference of image and smoothed version

Original Smoothed Difference 
(brightened)
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Approximation to Laplacian of Gaussian

(A G)-(A I) = A (G-I) ≈ (∇2G) A = ∇2(A G)

Laplacian of Gaussian

Gaussian

Impulse
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Linear Operators

Linear shift invariant (LSI) system
– Given a “black box” h:

– Linearity:

– Shift invariance:

Convolution with arbitrary h equivalent to 
these properties
– Beyond this course to show it

Linearity is “simple to understand” but 
real world not always linear
– E.g., saturation effects

f h g

af1+bf2 h ag1+bg2

f(x-u) h g(x-u)
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Gradient Magnitude

Also use smoothed image

⎟⎜∇(I hσ)⎟⎜ = ((∂(I hσ)/∂x)2 + (∂(I hσ)/∂y)2).5
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What Makes Good Edge Detector

Goals for an edge detector
– Minimize probability of multiple detection

• Two pixels classified as edges corresponding to 
single underlying edge in image

– Minimize probability of false detection
– Minimize distance between reported edge and 

true edge location

Canny analyzes in detail 1D step edge
– Shows that derivative of Gaussian is optimal 

with respect to above criteria
– Analysis does not extend easily to 2D
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Canny Edge Detector

Based on gradient magnitude and direction 
of Gaussian smoothed image
– Magnitude: ⎟⎜∇(Gσ I)⎟⎜
– Direction (unit vector): ∇(Gσ I) /⎟⎜∇(Gσ I)⎟⎜

Ridges in gradient magnitude
– Peaks in direction of gradient (normal to edge) 

but not along edge

Hysteresis mechanism to threshold strong 
edges
– Ridge pixel above lo threshold
– Connected via ridge to pixel above hi threshold
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Canny Edge Definition

Let (δx,δy) = ∇(Gσ I) /⎟⎜∇(Gσ I)⎟⎜
– Note compute without explicit square root

Let m = ⎟⎜∇(Gσ I)⎟⎜2

Non-maximum suppression (NMS)
– m(x,y) >m(x+δx(x,y),y+δy(x,y))
– m(x,y) ≥ m(x-δx(x,y),y-δy(x,y))

– Select “ridge points”

Still leaves many 
candidate edge pixels
– E.g., σ=1
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Canny Thresholding

Two level thresholding of candidate edge 
pixels (those that survive NMS)
– Above lo and connected to pixel above hi

Start by keeping (classifying as edges) all 
candidates above hi threshold
– Recursively if pixel above 

lo threshold and adjacent 
to an edge pixel keep it

Perform recursion 
using bfs/dfs
– E.g., σ=1, lo=5, hi=10 and lo=10, hi=20
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Multiscale Edges

Multi-scale image
I(x,y,σ) = I(x,y) Gσ(x,y)

Extract edges at across scales
– Notion of scale-space introduced by Witkin
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Scale Space

As scale increases
– edge position can change
– edges can disappear
– new edges are not created

Important to consider
different scales
– Or know certain scale is

important a priori


