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Matching and Fitting

Recognition and matching are closely 
related to fitting problems
Parametric fitting can serve as more 
restricted domain for investigating 
questions of noise and outlier
– Methods robust in presence of noise

Two widely used techniques
– RANSAC
– Hough transform

Generalized to matching and recognition 
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How Many “Good” Linear Fits?
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RANSAC

RANdom SAmple Consensus
– Fischler and Bolles, 1981

Select small number of data points and 
use to generate instance of model
– E.g., fit to a line

Check number of data points consistent 
with this fit
Iterate until “good enough” consistent set
Generate new fit from this set
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RANSAC
Objective

Robust fit of model to data set S which contains outliers
Algorithm
(i) Randomly select a sample of s data points from S and 

instantiate the model from this subset.
(ii) Determine the set of data points Si which are within a 

distance threshold t of the model.  The set Si is the 
consensus set of samples and defines  the inliers of S.

(iii) If the subset of Si is greater than some threshold T, re-
estimate the model using all the points in Si and terminate

(iv) If the size of Si is less than T, select a new subset and 
repeat the above.

(v) After N trials the largest consensus set Si is selected, and 
the model is re-estimated using all the points in the 
subset Si
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RANSAC Line Fitting Example

Task:
Estimate best line
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RANSAC Line Fitting Example

Sample two points
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RANSAC Line Fitting Example

Fit line
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RANSAC Line Fitting Example

Total number of 
points within a 
threshold of line
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RANSAC Line Fitting Example

Repeat, until get a 
good result
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RANSAC Line Fitting Example

Repeat, until get a 
good result
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RANSAC Line Fitting Example

Repeat, until get a 
good result
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Choosing Number of Samples

Choose N samples so that, with 
probability p, at least one random sample 
is free from outliers
– E.g. p=0.99

Let e denote proportion of outliers
– Data points that do not fit the model within 

the distance threshold t

Probability of selecting all inliers
– Sampling without replacement, not 

independent
• E.g., D data points and I inliers
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Probability of s samples all being inliers

For s<<D approximate by (I/D)s or (1-e)s

Now want to choose N so that, with 
probability p, at least one random sample 
is free from outliers

Choosing Number of Samples
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Choosing Number of Samples
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Adaptively Choosing N

Fraction of outliers is often unknown a 
priori
– Pick “worst” case, e.g. 50%, and adapt if 

more inliers are found

– N=∞, sample_count =0
– While N >sample_count repeat

• Choose a sample and count the number of inliers
• Set e=1-(number of inliers)/(total number of points)
• Recompute N from e
• Increment the sample_count by 1

– Terminate
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Number of Samples II

Make take more 
samples than one 
would think due to 
degenerate point 
sets
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Number of Samples II

These two 
points are 
inliers
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Number of Samples II

And yet the 
estimate 
yielded is 
poor
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Determine Potential Correspondences

Compare interest points
–E.g., similarity measure: SAD, SSD on 

small neighborhood

Note: can use correlation score to bias the 
selection of the samples selecting matches 
with a better correlation score more often

Note multiple matches for each point can 
be RANSAC’ed on (although this increases 
the proportion of outliers)
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Example: Robust Computation

Interest points
(500/image)

Putative 
correspondences (268)

Outliers (117)

Inliers (151)

Final inliers (262)
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Example: 2D Similarity Transformation

Set 1 Set 2
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Example: 2D Similarity Transformation

Set 1 Set 2

Set of matches from some correlation 
function, lighter ones incorrect
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Example: 2D Similarity Transformation

Set 1 Set 2

Two matches, used to infer transform, 
Here: Top match correct, bottom incorrect
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Example: 2D Similarity Transformation

Set 1 Set 2

Features mapped under transform do not 
align well
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Example; 2D Similarity Transformation

Set 1 Set 2

On the other hand, if we pick two correct 
matches (modulo noise)
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Example: 2D Similarity Transformation

Set 1 Set 2

Alignment is good!
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Cost Function 

RANSAC can be vulnerable to the correct 
choice of the threshold
– Too large all hypotheses are ranked equally
– Too small leads to an unstable fit

Same strategy can be followed with any 
modification of the cost function
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Threshold too high
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Threshold too high

This solution…
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Threshold too high

Is as good as this 
solution
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Threshold too low-no support
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Cost Function 

Examples of other cost functions
– Least Median Squares; i.e. take the sample 

that minimized the median of the residuals
– MAPSAC/MLESAC use the posterior or 

likelihood of the data
– MINPRAN (Stewart), makes assumptions about 

randomness of data
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LMS

Repeat M times:
– Sample minimal number of matches to 

estimate two view relation

– Calculate error of  all data

– Choose relation to minimize median of errors
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Pros and Cons LMS

PRO
– Do not need any threshold for inliers
– Can yield robust estimate of variance of errors

CON
– Cannot work for more than 50% outliers
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Robust Maximum Likelihood Estimation

Random Sampling can optimize any function:

Better, robust cost function, MLESAC

Probability of data given instantiation of model
Maximum likelihood or MAP estimation
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MLESAC/MAPSAC

This solution…
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MLESAC/MAPSAC

Is better than this 
solution
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MAPSAC

Add in prior to get to MAP solution

With MAPSAC one could sample less than the 
minimal number of points to make an estimate 
(using prior as extra information)

Any posterior can be optimized; random sampling 
good for matching and function optimization
– E.g. MAPSAC is a way to optimize objective functions 

regardless of outliers or not
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Underlying Assumptions

LMS criterion
– Minimum fraction of inliers is known

RANSAC criterion
– Inlier bound is known
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Not Necessarily Desirable

Structures may be “seen”
in data despite unknown 
scale and large outlier 
fractions
Potential unknown 
properties:
– Sensor characteristics
– Scene complexity
– Performance of 

low-level operations

Problems:
– Handling unknown scale
– Handling varying scale 

45% random outliers

44% from 1st structure 11% from 2nd structure
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Goal

A robust objective function, suitable for 
use in random-sampling algorithm, that is 
– Invariant to scale, 
– Does not require a prior lower bound on the 

fraction of inliers
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Approaches

MINPRAN (Stewart, IEEE T-PAMI Oct 1995)
– Discussed briefly today

MUSE (Stewart, IEEE CVPR 1996)
– Based on order statistics of residuals
– Focus of today’s presentation
– Code available in VXL and on the web

Other order-statistics based methods:
– Lee, Meer and Park, PAMI 1998
– Bab-Hadiashar and Suter, Robotica 1999

Kernel-density techniques
– Chen-Meer ECCV 2002
– Wang and Suter, PAMI 2004
– Subbarao and Meer, RANSAC-25 2006
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MINPRAN:
Minimize Probability of Randomness

65% outliers

26 inliers within +/- 8 units of 
random-sample-generated line

72 inliers within +/- 7 units of 
random-sample-generated line

55 inliers within +/- 2 units of 
random-sample-generated line
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• Probability of having at least k points 
within error distance +/- r if all errors 
follow a uniform distribution within 
distance +/- Z0:

• Lower values imply it is less likely 
that the residuals are uniform

• Good estimates, with appropriately 
chosen values of r (inlier bound) and 
k (number of inliers), have extremely 
low probability values

MINPRAN:  Probability Measure

r
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MINPRAN:  Discussion

O(S N log N + N2) algorithm
Good results for single structure
Limitations
– Requires a background distribution
– Tends to “bridge” discontinuities
– Quadratic running time
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MUSE:  Ordered Residuals of Good and 
Bad Estimates

Objective function should capture:
• Ordered residuals are lower for 

inliers to “good” estimate than for 
“bad” estimate

• Transition from inliers to outliers 
in “good” estimate
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Voting Based Schemes

In the Hough transform each feature in 
image “votes” for those instantiations of 
model that are consistent with it
Classic case is fitting lines to point 
features
– A given feature point defines a pencil of 

possible lines through it
– Several collinear (or nearly collinear) feature 

points will agree on one (or a few similar) lines
– Conventional to use r,θ parameterization of 

line
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Hough Space

Each (x,y) point in Cartesian plane defines 
constraint on possible lines

– Sinusoidal curve in r,θ plane

Analogous for finding circles

– But space now three-dimensional

ryx =+ θθ sincos

rbyax =−+− 22 )()(
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Accumulator Array

Discretize Hough parameter space
– Problematic for higher dimensions

Increment counts in all buckets that are 
intersected by the parameter values
– Analogous to line or curve-drawing on pixel or 

voxel grid

To allow for uncertainty in the measured 
values may make cells larger or increment 
values of neighboring cells
– Fractional increments 

• Analogous to anti-aliasing
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Classical Line Example

Each edge point votes for sinusoidal curve 
of buckets in Hough accumulator array
– Peaks corresponding to 8 lines defined by 

these edges
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Finding the Lines

Threshold peaks in accumulator array
– Common to use relative threshold, fraction of 

biggest peak

Some form of non-maximum suppression 
or “thinning”
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Uncertainty in Detected Lines

Bin size affects uncertainty, causing 
multiple similar lines to be found

Noise in data causes incorrect estimates

Problem: when does random noise 
produce peaks in the accumulator array?
– Random points in plane each generating curve 

in Hough space
• Get peaks of some size at random
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Small Amounts of Noise
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Small Amounts of Missing Data
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Real Image Example
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Real Image Example

70% relative threshold on peak size
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Real Image Example

40% relative threshold on peak size
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Generalized Hough Transform

Model as template and each image point 
votes for all possible models at that point
– For instance binary model under translation 

vote for all any way of placing model that has 
this image point an edge

Pre-compute a “lookup table” for 
incrementing Hough array
– For translation, offsets of each point to some 

fixed origin 

Often more votes per image pixel, with 
more chance of randomly occurring peaks


