

Announcements

- No class on Tuesday (J an 29)
- Meet in 315 Upson starting Thursday (J an 31)
- Reading: Edges (and filtering) handout
- Handouts and lecture slides on web at www.cs.cornell.edu/courses/cs664/

What's An Image?

- Think of as function from R^{2} to R,

Digital Images

- Generally work with discrete images
- Sample 2D space on a regular grid
- Quantize each value
- Round to nearest integer
- Represented as matrix of integer values

Filtering

- Compute new image by combining pixel values from an input image
- Generally spatially local over some region of support
- E.g., mitigating effects of noise/error
(3) Coment linumity

3x3 (kxk) Mean Filter Example

$G[i, j]=\frac{1}{(2 k+1)^{2}} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u, j+v]$

Border Pixels

- Border cases need to be handled somehow
- Produce smaller image by summing only when entire w by h window fits inside image
- Sum only value inside image but produce full size image
- In effect summing zeroes outside image
- Assume value outside image some non-zero value
- E.g., reflected copy of the image
- No right answer, reflection often least bad

장) Comell linment

Gaussian Filter

- Gaussian in two-dimensions

$$
h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{\sigma^{2}}}
$$

- Weights center pixels more

- Falls off smoothly
- Integrates to 1
- Larger σ produces more equal weights (blurs more)
- Normal distribution

() Comenl Uninerity

Cross Correlation Filtering

- Generalize to weight at each location in window

- Cross correlation written as $\mathrm{G}=\mathrm{H} \otimes \mathrm{F}$
- Not always consistent sometimes written as *
- H is called kernel, filter or mask
- What sum to?
- Mean filtering - uniform kernel values
- Implementation note: use $\mathrm{H}[\mathrm{u}+\mathrm{k}, \mathrm{v}+\mathrm{k}]$ - Non-negative array indices

(ᄌ) Comal lummity

Gaussian Versus Mean Filter

- Mean filter blurs but sharp changes remain as well
- "Blocky"
- Gaussian not blocky looking
- Same area masks
- But Gaussian small at borders
(7) comentument

Convolution

- Closely related operation that "flips" indices

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

- Written as G $=\mathrm{H} \star \mathrm{F}$
- Again, notation not always consistent
- Note \star and \otimes same when H or F symmetric
- Generally termed isotropic
- Convolution has nice properties
- Commutative: $A \star B=B \star A$
- Associative: $A *(B * C)=(A * B) \star C$
- Distributive: $A \star(B+C)=(A \star B)+(A \star C)$

Efficient Gaussian Smoothing

- The 2D Gaussian is decomposable into separate 1D convolutions in x and y
- First note that product of two onedimensional Gaussians

$$
\begin{aligned}
& h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}} \\
& \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-1}{2}\left(\frac{z^{2}}{2}\right)} \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-1}{2}\left(\frac{v^{2}}{\sigma^{2}}\right)}
\end{aligned}
$$

- Can view as product of two ld vectors
- Column times row vectors, each id Gaussian

(1) Cement Uhivenity

2D Gaussian as 1D Convolutions

$\star{ }^{1 / 4}{ }^{1 / 2}{ }^{1 / 4}=$

(3) Cornell University

Fast 1D Gaussian Convolution

- Repeated convolution of box filters approximates a Gaussian
- Application of central limit theorem, convolution of pdf's tends towards normal distr.
\qquad
\qquad * \qquad
\qquad * \qquad几 $\approx \Lambda$

* 111

| 0 | 0 | 1 | 2 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

\star| 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(자 Comentument
nil

Good Approximation to Gaussian

- Convolution of 4 unit height box filters of different widths yields low error
- Wells, PAMI Mar 1986
- Simply apply each box filter separately
- Also separate horizontal and vertical passes
- Each box filter constant time per pixel
- Running sum
- For Gaussian of given σ
- Choose widths w_{i} such that $\Sigma_{i}\left(w_{i}^{2}-1\right) / 12 \approx \sigma^{2}$
- In practice faster than explicit G_{σ} for $\sigma \approx 2$

.). Coned Univenity

Gaussian Pyramid

- Filter and subsample at each level
- Uses only $1 / 3$ more storage than original

Idea: Represent NxN image as a "pyramid" of
$1 \times 1,2 \times 2,4 \times 4, \ldots, 2^{*} \times 2^{k}$ images (assuming $\mathrm{N}=2^{*}$

Cosmell Inhenenity
Cosmel Unhernity

1D Linear I nterpolation

- Compute intermediate values by weighted combination of neighboring values
- Can view as convolution with "hat" on the original grid
- E.g., equal spacing yields mask .5 . 5

[^0]
Linear I nterpolation by Convolution

- Implement by convolution with mask based on grid shift
- If grid shifted to right by amount $0<a<1$ then use mask [(1-a) a]
- For example grid shifted halfway between

- Upsampled - combine

0	1	2	3	4	4	4	6	8	7	6	6	6	5	4	3	2

Bilinear I nterpolation

- Value at (a, b) based on four neighbors
$(1-b)(1-a) F_{0,0}+(1-b)$ a $F_{1,0}$
$+b(1-a) F_{0,1}+b a F_{1,0}$

(3) Coment linumity
conntinumy

[^0]: Cosell Unturath

