CS664 Computer Vision

2. Filtering

Dan Huttenlocher

What’s An Image?

» Think of as function f from R2 to R,
mapping (x,y) location to intensity
— Or vector valued for color image

= Only defined over finite domain and range

Filtering

= Compute new image by combining pixel
values from an input image

— Generally spatially local over some region of
support

— E.g., mitigating effects of noise/error
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Announcements

= No class on Tuesday (Jan 29)

= Meet in 315 Upson starting Thursday (Jan
31)

= Reading: Edges (and filtering) handout

= Handouts and lecture slides on web at
www.cs.cornell.edu/courses/cs664/

O ——

Digital Images

= Generally work with discrete images
— Sample 2D space on a regular grid
— Quantize each value
= Round to nearest integer

= Represented as matrix of integer values
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3x3 (kxk) Mean Filter Example
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Border Pixels

= Border cases need to be handled somehow

— Produce smaller image by summing only when
entire w by h window fits inside image
— Sum only value inside image but produce full
size image
= In effect summing zeroes outside image

— Assume value outside image some non-zero
value

= E.g., reflected copy of the image
= No right answer, reflection often least bad
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Gaussian Filter

= Gaussian in two-dimensions

1 _ru2+v2
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= Weights center pixels more
= Falls off smoothly

* Integrates to 1 1 [2]2]1
—12|4]|2

= Larger ¢ produces more 16551
equal weights (blurs more) Hilu. 0]

= Normal distribution
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Cross Correlation Examples
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Cross Correlation Filtering

= Generalize to weight at each location in
window ko k
Gli,jl= > 3 Hluwv]Fli+uj+]
u==kv==k
= Cross correlation written as G = H®F
— Not always consistent sometimes written as *
= His called kernel, filter or mask
— What sum to?
= Mean filtering — uniform kernel values
= Implementation note: use H[u+Kk,v+k]
— Non-negative array indices
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Gaussian Versus Mean Filter

= Mean filter blurs
but sharp changes
remain as well
— “Blocky”

= Gaussian not
blocky looking

= Same area
masks

— But Gaussian
small at borders
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Convolution

= Closely related operation that “flips” indices

k 13
Gli.jl = Z E Hlu, v]F[i = u.j =]

u==kv==k
= Written as G = H%F
= Again, notation not always consistent
= Note * and ® same when H or F symmetric
— Generally termed isotropic
= Convolution has nice properties
— Commutative: AXB=B*A
— Associative: A% (B*xC)=(A*B)*C
— Distributive: Ax(B+C)=(A%*B)+(A*C)
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Convolution Examples
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= Coenell University

Efficient Gaussian Smoothing

= The 2D Gaussian is decomposable into
separate 1D convolutions in x and y

= First note that product of two one-
dimensional Gaussians

= Can view as product of two 1d vectors
— Column times row vectors, each 1d Gaussian
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2D Gaussian as 1D Convolutions
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= Coenell University

Identity for Convolution

= Unit impulse: one at origin, zero elsewhere

= Suggests why simple averaging produces
“blocky” results

— Consider a=b=... =i=K
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= Coenell Univessity

Expressing as 1D Convolutions

= Use unit impulse as a notational trick
— Continuous case: 8(x) = « when x is 0, else 0
— Discrete case: 3[x] = 1 when x is O, else O
— fko=f

= hy= hg, * h(,y

. ho*l = (hox*hoy)*l=hcx*(h6y*l)
— Two 1D convolutions, don’t sum all the zeroes
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Fast 1D Gaussian Convolution

= Repeated convolution of box filters
approximates a Gaussian

— Application of central limit theorem, convolution
of pdf's tends towards normal distr.

TR TLx T s /L
[afafaf*[a]a]a]= [o]ofa[2]3]2]1]0]0]
*[1]a]a] = [o]a]sfe]7]e[3]1]0]

*x [1]1]1] = [1]4a]10]16[19[16]10] 4 [ 1]

= Ceenell University




Good Approximation to Gaussian

= Convolution of 4 unit height box filters of
different widths yields low error
— Wells, PAMI Mar 1986
= Simply apply each box filter separately
— Also separate horizontal and vertical passes
— Each box filter constant time per pixel
« Running sum
= For Gaussian of given o
— Choose widths w; such that %; (w;?-1)/12 ~ ¢?
= In practice faster than explicit G, for ¢ = 2
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Gaussian Pyramid

= Filter and subsample at each level
— Uses only 1/3 more storage than original

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2'x2* images {assuming N=2)

1D Linear Interpolation

= Compute intermediate values by weighted
combination of neighboring values

— Can view as convolution with “hat” on the
original grid
= E.g., equal spacing yields mask
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Gaussian Filter and Sub-Sample

Sampling and Interpolation

= What if scale is not halving of the image
= What if want to upsample not downsample
= More general issue of constructing best
samples on one grid given another grid
— Often referred to as resampling
= If scaling down, first lowpass filter

= In both cases then map from one grid to
another
— Bilinear interpolation (2 by 2)
— Bicubic interpolation (usually 4 by 4)
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Linear Interpolation by
Convolution
= Implement by convolution with mask
based on grid shift

— If grid shifted to right by amount O<a<1 then
use mask [(1-a) a]

= For example grid shifted halfway between

x [2[e2lslelela]z]

[1[3]a]e]7[e[5]3]

= Upsampled - combine
[ofs1]2]s]afafale][s][7[6]6]6][5][a]3]2]
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Bilinear Interpolation
* Value at (a,b) based on four neighbors
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Comparing Sampling Methods

= Bilinear filter and subsample, Gaussian
filter and subsample, straight subsample

1/2

1/4

* Bicubic generally works better
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Bilinear Interpolation by
Convolution
= Convolution with two-dimensional function

hiz,y) @

= Perform two one-dimensional convolutions
— Separable; simple to verify
— New grid shifted down and to right by (a,b)
= Where (as standard) origin of grid in upper left

— Convolve horizontally with [(1-a) a)] then
vertically with [(1-b) b]T
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