CS664 Computer Vision

2. Filtering

Dan Huttenlocher

What’s An Image?

» Think of as function f from R2 to R,
mapping (x,y) location to intensity
— Or vector valued for color image

= Only defined over finite domain and range

Filtering

= Compute new image by combining pixel
values from an input image

— Generally spatially local over some region of
support

— E.g., mitigating effects of noise/error

olojoolo|ofolo[0|0
o|ojojo|o|o|O0|O|O|O
olofo ojo
olofo olo
oj|o|o ojo
olojo|g0j0 ojo
olofo olo
o|ojojo|o|o|O|O|O|O
olojoojo|o|ofo]0[0|0
olojojojojojojo[0]|0O

F

Announcements

= No class on Tuesday (Jan 29)

= Meet in 315 Upson starting Thursday (Jan
31)

= Reading: Edges (and filtering) handout

= Handouts and lecture slides on web at
www.cs.cornell.edu/courses/cs664/

O ——

Digital Images

= Generally work with discrete images
— Sample 2D space on a regular grid
— Quantize each value
= Round to nearest integer

= Represented as matrix of integer values

/,,lsz w s [w [[[

3x3 (kxk) Mean Filter Example
0oj|0|0|O0O|O|O|O|O|O|O 20?20?02 |?2|?|?|?2]|?2]|°?
0O|0|0|O0|O|O|O|O|O|O ? |10 (10{20|30|30(30{20|10| ?
0]0]0|90/90|90|90|90|0 | O ? |0]20]40|60|60|60(40|20| ?
0]0]0]90(90(90|90|90|0 | O ? 10]30[60|90|90|90(60(30]| ?
0] 0]0|90/90|90J90|90|0 | O ? 10]30/50|80/80|90(60|30]| ?
0[0]|0|90| 0 |90J90|90|0 |0 ? 10 /30]50|80|80|90(60(30]| ?
0| 0|0 |90[{90[90J90|90|0 | O ? | 0 |{20|30|50(50(60|40|20| ?
ojo|o|ojojojo|0f0O|O ? |10({20{30|30|30(30(20|10| ?
0ojo|90|{0joO0j0O|O|OfO|O ? |(10({10{10/0|O|O|0O|O|?
ojojojojojo|O0|0O|0O|O 21?2?22 |?2|?]|?2]|?2]|°?
1 Lok
Glivjl = - C Flitug]
(2k+1)2 u:Z‘_J.- u:zia-

Border Pixels

= Border cases need to be handled somehow

— Produce smaller image by summing only when
entire w by h window fits inside image
— Sum only value inside image but produce full
size image
= In effect summing zeroes outside image

— Assume value outside image some non-zero
value

= E.g., reflected copy of the image
= No right answer, reflection often least bad

O ——

Gaussian Filter

= Gaussian in two-dimensions

1 _ru2+v2
h(u,v) = 5752¢ o2
wo

= Weights center pixels more
= Falls off smoothly

* Integrates to 1 1 [2]2]1
—12|4]|2

= Larger ¢ produces more 16551
equal weights (blurs more) Hilu. 0]

= Normal distribution

© —— I

Cross Correlation Examples

olofofo]o 202222

o0j0jo O|la|lbjc|O ?2lal|b|c|?

011101 ® [olale|f|o| — [2]d|e|f]|>

0l0jo O|lg|h|i]|O ?2lglh]i]|?

H o|ofofolo 202222
F G

o|ofofofo 202]2]2]»

alblc ololofo]o 2ilnlg]~

dlelf1 ® Jolola]o|o| — [2]f]eldl~

glhli olofofolo 2lc|blal?

H o|ofofo]o 202222
F G

Cross Correlation Filtering

= Generalize to weight at each location in
window ko k
Gli,jl= > 3 Hluwv]Fli+uj+]
u==kv==k
= Cross correlation written as G = H®F
— Not always consistent sometimes written as *
= His called kernel, filter or mask
— What sum to?
= Mean filtering — uniform kernel values
= Implementation note: use H[u+Kk,v+k]
— Non-negative array indices

O —— I

Gaussian Versus Mean Filter

= Mean filter blurs
but sharp changes
remain as well
— “Blocky”

= Gaussian not
blocky looking

= Same area
masks

— But Gaussian
small at borders

O I

Convolution

= Closely related operation that “flips” indices

k 13
Gli.jl = Z E Hlu, v]F[i = u.j =]

u==kv==k
= Written as G = H%F
= Again, notation not always consistent
= Note * and ® same when H or F symmetric
— Generally termed isotropic
= Convolution has nice properties
— Commutative: AXB=B*A
— Associative: A% (B*xC)=(A*B)*C
— Distributive: Ax(B+C)=(A%*B)+(A*C)

O

Convolution Examples
olofofo]o 202222
0jojo olalb|c|o 2lalblc|?
o110 % [olalelf|o| = [2]dale|f]|>
0l0j° O|g|lh|i]|O ?2lglh]i]|?
H o|ofofolo 2020222

F G
olofofo]o 202222
alble olo|ojo|o 2lalb|c|?
dielfl % [ololzlo]|o| = [2]d|e|f]|>
glhli olofofolo 2lglh|i]?
H o|ofofo]o 202222

F G

= Coenell University

Efficient Gaussian Smoothing

= The 2D Gaussian is decomposable into
separate 1D convolutions in x and y

= First note that product of two one-
dimensional Gaussians

= Can view as product of two 1d vectors
— Column times row vectors, each 1d Gaussian

= p—

2D Gaussian as 1D Convolutions
ojojo|0O0|0O 0oO|4|4|4]|0
0 |16|16|16| O 174 0 |12|12|12| O
01616160*=01616160
0 |16|16|16| O 0 |12|12|12| 0
ojojo|O0|0O 0|4|4|4]|0

* =
ololo|lolo 1(3|4|3|1
0 l16l16/16| 0 1/16|1/8[1/16] 391293
o |16]16/16] 0 * |1/8|1s4|1/8 = 4 |12|16]12| 4
o |16|16/16| 0 1716 1/8|1/16 3|9(12/9 |3
ololo|lolo 1(3|4|3|1

= Coenell University

Identity for Convolution

= Unit impulse: one at origin, zero elsewhere

= Suggests why simple averaging produces
“blocky” results

— Consider a=b=... =i=K

olof[o|o]o 22222
blc o|lo|ofo]o 2lalblcl|?
dle * [olo|z]olo| — [2]d|e|t]|=
g|lhl|i

olo|[o|o]o 2|glnli]>

olo|ofo]|o 2]2]2]2]2

= Coenell Univessity

Expressing as 1D Convolutions

= Use unit impulse as a notational trick
— Continuous case: 8(x) = « when x is 0, else 0
— Discrete case: 3[x] = 1 when x is O, else O
— fko=f

= hy= hg, * h(,y

. ho*l = (hox*hoy)*l=hcx*(h6y*l)
— Two 1D convolutions, don’t sum all the zeroes

= p—

Fast 1D Gaussian Convolution

= Repeated convolution of box filters
approximates a Gaussian

— Application of central limit theorem, convolution
of pdf's tends towards normal distr.

TR TLx T s /L
[afafaf*[a]a]a]= [o]ofa[2]3]2]1]0]0]
*[1]a]a] = [o]a]sfe]7]e[3]1]0]

*x [1]1]1] = [1]4a]10]16[19[16]10] 4 [1]

= Ceenell University

Good Approximation to Gaussian

= Convolution of 4 unit height box filters of
different widths yields low error
— Wells, PAMI Mar 1986
= Simply apply each box filter separately
— Also separate horizontal and vertical passes
— Each box filter constant time per pixel
« Running sum
= For Gaussian of given o
— Choose widths w; such that %; (w;?-1)/12 ~ ¢?
= In practice faster than explicit G, for ¢ = 2

O ——

Gaussian Pyramid

= Filter and subsample at each level
— Uses only 1/3 more storage than original

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2'x2* images {assuming N=2)

1D Linear Interpolation

= Compute intermediate values by weighted
combination of neighboring values

— Can view as convolution with “hat” on the
original grid
= E.g., equal spacing yields mask

K T 7 2753 7 5T T

Gaussian Filter and Sub-Sample

Sampling and Interpolation

= What if scale is not halving of the image
= What if want to upsample not downsample
= More general issue of constructing best
samples on one grid given another grid
— Often referred to as resampling
= If scaling down, first lowpass filter

= In both cases then map from one grid to
another
— Bilinear interpolation (2 by 2)
— Bicubic interpolation (usually 4 by 4)

O

Linear Interpolation by
Convolution
= Implement by convolution with mask
based on grid shift

— If grid shifted to right by amount O<a<1 then
use mask [(1-a) a]

= For example grid shifted halfway between

x [2[e2lslelela]z]

[1[3]a]e]7[e[5]3]

= Upsampled - combine
[ofs1]2]s]afafale][s][7[6]6]6][5][a]3]2]

O

Bilinear Interpolation
* Value at (a,b) based on four neighbors
(1-b)@A-a)F,+(@1-b)aF,,
+b(l-a)F,, +bakF, ,

.1
0 Sl

0.b)

la.b) -6l

0.0 (2.0 .o

O ——

Comparing Sampling Methods

= Bilinear filter and subsample, Gaussian
filter and subsample, straight subsample

1/2

1/4

* Bicubic generally works better

© —— I—

Bilinear Interpolation by
Convolution
= Convolution with two-dimensional function

hiz,y) @

= Perform two one-dimensional convolutions
— Separable; simple to verify
— New grid shifted down and to right by (a,b)
= Where (as standard) origin of grid in upper left

— Convolve horizontally with [(1-a) a)] then
vertically with [(1-b) b]T

O ——

