

Cross Correlation Filtering

- Generalize to weight at each location in window $G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i+u, j+v]$
- Cross correlation written as G = H⊗F
 Not always consistent sometimes written as *
- H is called kernel, filter or mask
 What sum to?
- Mean filtering uniform kernel values
- Implementation note: use H[u+k,v+k]
- Non-negative array indices

Cornell Univers

- Convolution of 4 unit height box filters of different widths yields low error
 Wells. PAMI Mar 1986
- Simply apply each box filter separately
 Also separate horizontal and vertical passes
 - Each box filter constant time per pixel
 Running sum
- For Gaussian of given σ Choose widths w_i such that $\Sigma_i~(w_i^{~2}\text{-}1)/12\approx\sigma^2$
- In practice faster than explicit G_{σ} for $\sigma \approx 2$

Cornell University

