
CS 664
Flexible Templates

Daniel Huttenlocher



2

Flexible Template Matching

Pictorial structures
– Parts connected by springs and appearance 

models for each part
– Used for human bodies, faces
– Fischler&Elschlager, 1973 – considerable 

recent work



3

Formal Definition of Model

Set of parts V={v1, …, vn}
Configuration L=(l1, …, ln)
– Specifying locations of the parts

Appearance parameters A=(a1, …, an)
– Model for each part

Edge eij, (vi,vj) ∈ E for connected parts
– Explicit dependency between part locations li, lj
Connection parameters C={cij | eij ∈ E}
– Spring parameters for each pair of connected 

parts



4

Flexible Template Algorithms

Difficulty depends on structure of graph
– Which parts connected and form of constraint

General case exponential time
– Consider special case in which parts translate 

with respect to common origin
• E.g., useful for faces

• Parts V= {v1, … vn}

• Distinguished central part v1

• Spring ci1 connecting vi to v1

• Quadratic cost for spring



5

Efficient Algorithm for Central Part  

Location L=(l1, …, ln) specifies where each 
part positioned in image
Best location minL (Σi mi(li) + di(li,l1))
– Part cost mi(li) 

• Measures degree of mismatch of appearance ai
when part vi placed at each of h locations, li

– Deformation cost di(li,l1)
• Spring cost ci1 of part vi measured with respect 

to central part v1

• E.g., quadratic or truncated quadratic function
• Note deformation cost zero for part v1 (wrt self)



6

Central Part Model

Spring cost cij: i=1, ideal location of lj wrt l1
– Translation oj=rj-r1

– Tj(x)=x+oj

Spring cost deformation from this ideal
– ⎟⎜lj–Tj(l1)⎟⎜2

v1

v3

v2

r1

r2

r3

o2

o3



7

Consider Case of 2 Parts

minl1,l2
(m1(l1) + m2(l2)+⎟⎜l2–T2(l1)⎟⎜2)

– Where T2(l1) transforms l1 to ideal location with 
respect to l2 (offset)

minl1
(m1(l1) + minl2

(m2(l2)+⎟⎜l2–T2(l1)⎟⎜2))
– But minx (f(x) + ⎟⎜x–y⎟⎜2) is a distance transform

minl1
(m1(l1) + Dm2

(T2(l1))

Sequential rather than simultaneous min
– Don’t need to consider each pair of positions for 

the two parts because a distance
• Just distance transform the match cost function, m



8

Overall Computation for 2 Parts 

Image and model
(translation)

Match cost of each
part m1(l1), m2(l2)

Distance transform 
of m2(l2)

minl1
(m1(l1) + DTm2

(T2(l1))

+



9

Star Graph – Central Reference Part

minL (Σi (mi(li) + di(li,l1)))

minL (Σi mi(li) + ⎟⎜li – Ti(l1)⎟⎜2)
– Quadratic distance between location of part vi

and ideal location given location of central part

minl1
(m1(l1) + 
Σi>1 minli

(mi(li)+⎟⎜li–Ti(l1)⎟⎜2))
– i-th term of sum minimizes only over li

minl1
(m1(l1) + Σi>1 Dmi

(Ti(l1)))
– Because Df(x) = miny (f(y) + ⎟⎜y-x⎟⎜2)



10

Star Graph 

Simple overall computation
– Match cost mi(li) for each part at each location
– Distance transform of mi(li) for each part other 

than reference part
• Shifted by ideal relative location Ti(l1) for that 

part

– Sum the match cost for the first part with the 
distance transforms for the other parts

– Find location with minimum value in this sum 
array (best match)

DT allows for flexibility in part locations



11

Overall Computation for Star Graph 

Part costs, O(h) time each, total O(hn)

Distance transform non-reference part costs, 
sum to get MAP location, O(mn) time



12

More General Flexible Templates

Efficient computation using distance 
transforms for any tree-structured model
– Not limited to central reference part – star 

Two differences from reference part case
– Relate positions of parts to one another using 

tree-structured recursion
• Solve with Viterbi or forward-backward 

algorithm

– Parameterization of distance transform more 
complex – transformation Tij for each 
connected pair of parts 



13

General Form of Problem

Best location can be viewed in terms of 
probability or cost (negative log prob.)
– maxLp(L|I,Θ)=argmaxLp(I|L,A)p(L|E,C)

– minL ΣV mj(lj) + ΣE dij(li,lj)
• mj(lj) – how well part vj matches image at lj
• dij(li,lj) – how well locations li,lj agree with model

(spring connecting parts vi and vj)

Difficulty of maximization/minimization 
depends on form of graph and pairwise
cost



14

Minimizing Over Tree Structures

Use dynamic programming to minimize
ΣV mj(lj) + ΣE dij(li,lj)

Can express as function for pairs Bj(li) 
– Cost of best location of vj given location li of vi

Recursive formulas in terms of children 
Cj of vj

– Bj(li) = minlj ( mj(lj) + dij(li,lj) + ΣCj Bc(lj) )

– For leaf node no children, so last term empty 
– For root node no parent, so second term 

omitted



15

Efficient Algorithm for Trees

MAP estimation algorithm
– Tree structure allows use of Viterbi style 

dynamic programming
• O(nh2) rather than O(hn) for h locations, n parts
• Still slow to be useful in practice (h in millions)

– Couple with distance transform method for 
finding best pair-wise locations in linear time
• Resulting O(nh) method

Similar techniques allow sampling from 
posterior distribution in O(nh) time
– Using forward-backward algorithm



16

O(nh) Algorithm for MAP Estimate

Express Bj(li) in recursive minimization 
formulas as a DT Df(Tij(li))
– Cost function

• f(y) = mj(Tji
-1(y)) + ∑Cj Bc(Tji

-1(y)) 

– Tij maps locations to space where difference 
between li and lj is a squared distance
• Distance zero at ideal relative locations

Yields n recursive equations 
– Each can be computed in O(hD) time

• D is number of dimensions to parameter space 
but is fixed (D generally 2 to 4)



17

Sampling the Posterior

Generate good possible matches as 
hypotheses
– Locations where posterior p(L|I,Θ) large

– Validate using another technique
• Here use a correlation-like measure (Chamfer)

Computation similar to MAP estimation
– Recursive equations, one per part
– Ability to solve each equation in linear time

• Linear time dynamic programming 
approximation to Gaussian using box filters

– Running time under a minute for person model



18

Sampling Approach

Marginal distribution for location lr of 
(arbitrarily chosen) root part
p(lr|I,Θ) = ∑L\lr (∏V p(I|li,ai) ∏E p(li,lj|cij))

Can be computed efficiently due to tree 
structured dependencies

p(lr|I,Θ) ∝ p(I|lr,ar) ∏Ch sc(lr) 

– And fast convolution when p(li,lj|cij) Gaussian
sj(li) ∝ ∑lj (p(I|lj,aj) p(li,lj|cij) ∏Ch sc(lj))

Sample location for root from marginal
– Sample from root to leaves using p(lj|li,I,Θ)



19

Samples From Posterior



20

Sampling from Proposal Distribution

Can use to address limitations of models
– Non-Gaussian pairwise constraints
– Non-independence of individual part 

appearance

Use model that factors to propose high 
probability answers according to a simpler 
model
Maximize a less tractable criterion only for 
those sample configurations



21

Weakly Supervised Learning

Consider large number of initial patch 
models to generate possible parts
– Ranked by likelihood of data given part

Generate all pairwise models formed by 
two initial patches

Consider all sets of reference parts for 
fixed k

Greedily add parts based on pairwise
models to produce initial models
– One per reference set



22

Learning Spatial Model

Estimate pairwise spatial models for all 
pairs of patches – maximum likelihood

Consider all k-tuples as root sets

Use pairwise models to approximate true 
spatial model
– Exact for 2-cliques (1-fan, star graph)

Use EM to update model
– Iteratively improve both appearance and 

spatial models



23

A More Accurate Form of Model

Independent part appearance can over 
count evidence when parts overlap
– Address by changing form of image likelihood

POP – patchwork of parts [AT07]
– More accurate model that accounts for 

overlapping parts

– Average probabilities of patches that overlap
• Distribution does not factor, can’t compute 

efficiently

• Can sample efficiently from factored distribution 
and then maximize POP criterion



24

Example Learned Models

Star graph (one fan)
– 24x24 patches
– Reference part in bold box
– Blue ellipse 2σ level set of Gaussian

Side View of Car Side View of Bicycle



25

Spatial Models for Human Pose

Widespread use of kinematic tree models
– Encode relationships between rigid parts 

connected by joints (2D and 3D)
– Enables efficient exact inference/global 

optimization of pose given model and data



26

Limitations of Kinematic Trees

Only represent relationships between 
connected parts
Coordination between limbs not encoded
– Critical for balance and many activities

Equally good under tree model



27

Addressing Limitations

Sampling based approaches
– Probabilistic model
– Sample high posterior probability poses and 

verify using other means (e.g, IF01, FH05)
• Tractable because posterior factors

Conditional random fields



28

Our Approach: Richer Spatial Model

Latent variables to encode additional 
relationships – e.g., between upper limbs
– Low order (small cliques) to ensure efficient 

optimization/inference

In contrast to simply adding constraints 
which can result in large clique
– Running time exponential in clique size



29

Learning Latent Variable Models

First learn tree model [FH00,FH05]
– Maximum likelihood estimation
– Learn connections between parts and spatial 

relations

Yields kinematic tree automatically
– Lowest variability connections between parts

Example using 240 labeled
side-walking frames in CMU
HumanID dataset
– Shown at mean pose



30

Identify Violations of Tree Model

Conditional independence
– Parts with common “parent” should have 

uncorrelated locations given location of parent

Consider simple 2D human body model
– Pairwise relations parameterized by position, 

orientation and scale

Correlation in orientation given torso location



31

Test for Underlying Explanation 

Violations of conditional independence 
correspond to additional constraints
– But don’t want to model with large clique

Determine whether simple parametric 
characterization of these constraints
– Use factor analysis to identify common factor

Y = N(AX,Λ)

– Factor loading vector A controls how scalar 
factor X affects variables Y

– For human walking yields a single highly 
predictive gait-cycle parameter (“swing”)



32

Summary of Model Learning

Learn a tree model from labeled training 
data (max likelihood estimation)
Identify parts that violate conditional 
independence of tree model
– With respect to common parent

Use factor analysis to discover underlying 
control variable(s)
Introduce these latent variable(s) into the 
tree model
– Yielding tree-like model



33

Inference Using These Models

When value of latent variable is fixed, 
have a tree
– Efficient exact inference using Viterbi, forward 

or belief propagation algorithms

Optimize over range of values of latent 
variable
Use generalized distance transform 
methods to accelerate running time 
– Still exact estimation (global optimum)



34

Examples Using Brown MOCAP Data

MAP estimate of best pose, single frame

Ground Truth Common 
Factor Model

Tree Model Clique Model
Using LBP



35

Results on Brown Sequence

Per frame error, averaged over joints

Per joint error, averaged over frames



36

Examples

Common factor
model

Tree model


