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Flexible Template Matching

Pictorial structures
– Parts connected by springs and appearance 

models for each part
– Used for human bodies, faces
– Fischler&Elschlager, 1973 – considerable 

recent work
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Formal Definition of Model

Set of parts V={v1, …, vn}
Configuration L=(l1, …, ln)
– Specifying locations of the parts

Appearance parameters A=(a1, …, an)
– Model for each part

Edge eij, (vi,vj) ∈ E for connected parts
– Explicit dependency between part locations li, lj
Connection parameters C={cij | eij ∈ E}
– Spring parameters for each pair of connected 

parts
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Flexible Template Algorithms

Difficulty depends on structure of graph
– Which parts connected and form of constraint

General case exponential time
– Consider special case in which parts translate 

with respect to common origin
• E.g., useful for faces

• Parts V= {v1, … vn}

• Distinguished central part v1

• Spring ci1 connecting vi to v1

• Quadratic cost for spring
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Efficient Algorithm for Central Part  

Location L=(l1, …, ln) specifies where each 
part positioned in image
Best location minL (Σi mi(li) + di(li,l1))
– Part cost mi(li) 

• Measures degree of mismatch of appearance ai
when part vi placed at each of h locations, li

– Deformation cost di(li,l1)
• Spring cost ci1 of part vi measured with respect 

to central part v1

• E.g., quadratic or truncated quadratic function
• Note deformation cost zero for part v1 (wrt self)
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Central Part Model

Spring cost cij: i=1, ideal location of lj wrt l1
– Translation oj=rj-r1

– Tj(x)=x+oj

Spring cost deformation from this ideal
– ⎟⎜lj–Tj(l1)⎟⎜2
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Consider Case of 2 Parts

minl1,l2
(m1(l1) + m2(l2)+⎟⎜l2–T2(l1)⎟⎜2)

– Where T2(l1) transforms l1 to ideal location with 
respect to l2 (offset)

minl1
(m1(l1) + minl2

(m2(l2)+⎟⎜l2–T2(l1)⎟⎜2))
– But minx (f(x) + ⎟⎜x–y⎟⎜2) is a distance transform

minl1
(m1(l1) + Dm2

(T2(l1))

Sequential rather than simultaneous min
– Don’t need to consider each pair of positions for 

the two parts because a distance
• Just distance transform the match cost function, m
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Overall Computation for 2 Parts 

Image and model
(translation)

Match cost of each
part m1(l1), m2(l2)

Distance transform 
of m2(l2)

minl1
(m1(l1) + DTm2

(T2(l1))

+
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Star Graph – Central Reference Part

minL (Σi (mi(li) + di(li,l1)))

minL (Σi mi(li) + ⎟⎜li – Ti(l1)⎟⎜2)
– Quadratic distance between location of part vi

and ideal location given location of central part

minl1
(m1(l1) + 
Σi>1 minli

(mi(li)+⎟⎜li–Ti(l1)⎟⎜2))
– i-th term of sum minimizes only over li

minl1
(m1(l1) + Σi>1 Dmi

(Ti(l1)))
– Because Df(x) = miny (f(y) + ⎟⎜y-x⎟⎜2)
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Star Graph 

Simple overall computation
– Match cost mi(li) for each part at each location
– Distance transform of mi(li) for each part other 

than reference part
• Shifted by ideal relative location Ti(l1) for that 

part

– Sum the match cost for the first part with the 
distance transforms for the other parts

– Find location with minimum value in this sum 
array (best match)

DT allows for flexibility in part locations
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Overall Computation for Star Graph 

Part costs, O(h) time each, total O(hn)

Distance transform non-reference part costs, 
sum to get MAP location, O(mn) time
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More General Flexible Templates

Efficient computation using distance 
transforms for any tree-structured model
– Not limited to central reference part – star 

Two differences from reference part case
– Relate positions of parts to one another using 

tree-structured recursion
• Solve with Viterbi or forward-backward 

algorithm

– Parameterization of distance transform more 
complex – transformation Tij for each 
connected pair of parts 
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General Form of Problem

Best location can be viewed in terms of 
probability or cost (negative log prob.)
– maxLp(L|I,Θ)=argmaxLp(I|L,A)p(L|E,C)

– minL ΣV mj(lj) + ΣE dij(li,lj)
• mj(lj) – how well part vj matches image at lj
• dij(li,lj) – how well locations li,lj agree with model

(spring connecting parts vi and vj)

Difficulty of maximization/minimization 
depends on form of graph and pairwise
cost
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Minimizing Over Tree Structures

Use dynamic programming to minimize
ΣV mj(lj) + ΣE dij(li,lj)

Can express as function for pairs Bj(li) 
– Cost of best location of vj given location li of vi

Recursive formulas in terms of children 
Cj of vj

– Bj(li) = minlj ( mj(lj) + dij(li,lj) + ΣCj Bc(lj) )

– For leaf node no children, so last term empty 
– For root node no parent, so second term 

omitted
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Efficient Algorithm for Trees

MAP estimation algorithm
– Tree structure allows use of Viterbi style 

dynamic programming
• O(nh2) rather than O(hn) for h locations, n parts
• Still slow to be useful in practice (h in millions)

– Couple with distance transform method for 
finding best pair-wise locations in linear time
• Resulting O(nh) method

Similar techniques allow sampling from 
posterior distribution in O(nh) time
– Using forward-backward algorithm
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O(nh) Algorithm for MAP Estimate

Express Bj(li) in recursive minimization 
formulas as a DT Df(Tij(li))
– Cost function

• f(y) = mj(Tji
-1(y)) + ∑Cj Bc(Tji

-1(y)) 

– Tij maps locations to space where difference 
between li and lj is a squared distance
• Distance zero at ideal relative locations

Yields n recursive equations 
– Each can be computed in O(hD) time

• D is number of dimensions to parameter space 
but is fixed (D generally 2 to 4)
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Sampling the Posterior

Generate good possible matches as 
hypotheses
– Locations where posterior p(L|I,Θ) large

– Validate using another technique
• Here use a correlation-like measure (Chamfer)

Computation similar to MAP estimation
– Recursive equations, one per part
– Ability to solve each equation in linear time

• Linear time dynamic programming 
approximation to Gaussian using box filters

– Running time under a minute for person model
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Sampling Approach

Marginal distribution for location lr of 
(arbitrarily chosen) root part
p(lr|I,Θ) = ∑L\lr (∏V p(I|li,ai) ∏E p(li,lj|cij))

Can be computed efficiently due to tree 
structured dependencies

p(lr|I,Θ) ∝ p(I|lr,ar) ∏Ch sc(lr) 

– And fast convolution when p(li,lj|cij) Gaussian
sj(li) ∝ ∑lj (p(I|lj,aj) p(li,lj|cij) ∏Ch sc(lj))

Sample location for root from marginal
– Sample from root to leaves using p(lj|li,I,Θ)
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Samples From Posterior
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Sampling from Proposal Distribution

Can use to address limitations of models
– Non-Gaussian pairwise constraints
– Non-independence of individual part 

appearance

Use model that factors to propose high 
probability answers according to a simpler 
model
Maximize a less tractable criterion only for 
those sample configurations
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Weakly Supervised Learning

Consider large number of initial patch 
models to generate possible parts
– Ranked by likelihood of data given part

Generate all pairwise models formed by 
two initial patches

Consider all sets of reference parts for 
fixed k

Greedily add parts based on pairwise
models to produce initial models
– One per reference set
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Learning Spatial Model

Estimate pairwise spatial models for all 
pairs of patches – maximum likelihood

Consider all k-tuples as root sets

Use pairwise models to approximate true 
spatial model
– Exact for 2-cliques (1-fan, star graph)

Use EM to update model
– Iteratively improve both appearance and 

spatial models
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A More Accurate Form of Model

Independent part appearance can over 
count evidence when parts overlap
– Address by changing form of image likelihood

POP – patchwork of parts [AT07]
– More accurate model that accounts for 

overlapping parts

– Average probabilities of patches that overlap
• Distribution does not factor, can’t compute 

efficiently

• Can sample efficiently from factored distribution 
and then maximize POP criterion



24

Example Learned Models

Star graph (one fan)
– 24x24 patches
– Reference part in bold box
– Blue ellipse 2σ level set of Gaussian

Side View of Car Side View of Bicycle
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Spatial Models for Human Pose

Widespread use of kinematic tree models
– Encode relationships between rigid parts 

connected by joints (2D and 3D)
– Enables efficient exact inference/global 

optimization of pose given model and data
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Limitations of Kinematic Trees

Only represent relationships between 
connected parts
Coordination between limbs not encoded
– Critical for balance and many activities

Equally good under tree model
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Addressing Limitations

Sampling based approaches
– Probabilistic model
– Sample high posterior probability poses and 

verify using other means (e.g, IF01, FH05)
• Tractable because posterior factors

Conditional random fields
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Our Approach: Richer Spatial Model

Latent variables to encode additional 
relationships – e.g., between upper limbs
– Low order (small cliques) to ensure efficient 

optimization/inference

In contrast to simply adding constraints 
which can result in large clique
– Running time exponential in clique size
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Learning Latent Variable Models

First learn tree model [FH00,FH05]
– Maximum likelihood estimation
– Learn connections between parts and spatial 

relations

Yields kinematic tree automatically
– Lowest variability connections between parts

Example using 240 labeled
side-walking frames in CMU
HumanID dataset
– Shown at mean pose
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Identify Violations of Tree Model

Conditional independence
– Parts with common “parent” should have 

uncorrelated locations given location of parent

Consider simple 2D human body model
– Pairwise relations parameterized by position, 

orientation and scale

Correlation in orientation given torso location
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Test for Underlying Explanation 

Violations of conditional independence 
correspond to additional constraints
– But don’t want to model with large clique

Determine whether simple parametric 
characterization of these constraints
– Use factor analysis to identify common factor

Y = N(AX,Λ)

– Factor loading vector A controls how scalar 
factor X affects variables Y

– For human walking yields a single highly 
predictive gait-cycle parameter (“swing”)
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Summary of Model Learning

Learn a tree model from labeled training 
data (max likelihood estimation)
Identify parts that violate conditional 
independence of tree model
– With respect to common parent

Use factor analysis to discover underlying 
control variable(s)
Introduce these latent variable(s) into the 
tree model
– Yielding tree-like model
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Inference Using These Models

When value of latent variable is fixed, 
have a tree
– Efficient exact inference using Viterbi, forward 

or belief propagation algorithms

Optimize over range of values of latent 
variable
Use generalized distance transform 
methods to accelerate running time 
– Still exact estimation (global optimum)
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Examples Using Brown MOCAP Data

MAP estimate of best pose, single frame

Ground Truth Common 
Factor Model

Tree Model Clique Model
Using LBP
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Results on Brown Sequence

Per frame error, averaged over joints

Per joint error, averaged over frames
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Examples

Common factor
model

Tree model


