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Flexible Template Matching

= Pictorial structures

— Parts connected by springs and appearance
models for each part

— Used for human bodies, faces

— Fischler&Elschlager, 1973 — considerable
recent work
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Formal Definition of Model

= Set of parts V={v, ..., V,}
= Configuration L=, ..., |.)
— Specifying locations of the parts

= Appearance parameters A=(a4, ..., a,))
— Model for each part

= BEdge g;;, (v;,v;) € E for connected parts

— Explicit dependency between part locations I, Ij

= Connection parameters C={c; | e; € E}

— Spring parameters for each pair of connected
parts




Flexible Template Algorithms

= Difficulty depends on structure of graph
— Which parts connected and form of constraint

= General case exponential time

— Consider special case in which parts translate
with respect to common origin

e E.g., useful for faces
- oy e Parts V= {v,, ... V. }

= Distinguished central part v,
= Spring ¢;; connecting v; to v,

e Quadratic cost for spring




Efficient Algorithm for Central Part

= Location L=(l,, ..., |,) specifies where each
part positioned In image

= Best location min, (Z, m(l)) + d.(l;,1,))
— Part cost m(l,)

- Measures degree of mismatch of appearance a
when part v; placed at each of h locations, |,

— Deformation cost di(l;,1,)

e Spring cost c;; of part v; measured with respect
to central part v,

e E.g., quadratic or truncated quadratic function
 Note deformation cost zero for part v, (wrt self)
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Central Part Model

= Spring cost ¢;: I=1, ideal location of |; wrt |,
— Translation o;=r;-r;
— T;(X)=x+0;

= Spring cost deformation rfrom this ideal
— =T 112
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Consider Case of 2 Parts

= ming . (My(1y) + my()+ [1,-T,(1y) [12)
— Where T,(l,) transforms I, to ideal location with
respect to |, (offset)

y min|1 (my(ly) + min|2 (Ma(I)+ [1=T,(1) 12))
— But min, (f(x) + [ x—y[2) is a distance transform

" minl1 (my(ly) + sz(Tz(ll))

= Sequential rather than simultaneous min

— Don’t need to consider each pair of positions for
the two parts because a distance

e Just distance transform the match cost function, m
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Overall Computation for 2 Parts

= Image and model
(translation)

= Match cost of each
part m,(l;), my(l)

= Distance transform
of m,(l,)

= min, (m,(l;) + DT, (T»(,))
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Star Graph — Central Reference Part

= min, (&, (m;(l)) + d.(l;,1,)))
« min_ &MY + 1= T,0) 12)

— Quadratic distance between location of part v;
and ideal location given location of central part

= min, (My(ly) +
%i=q ming (m()+ =T, [2))

— I-th term of sum minimizes only over |,

" rnin|1 (ml(ll) + Zi>1 Dmi(Ti(Il)))
— Because Dg(x) = min, (f(y) + | y-x12)
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Star Graph

= Simple overall computation
— Match cost m(l.) for each part at each location

— Distance transform of m;(l;) for each part other
than reference part

e Shifted by ideal relative location T;(l,) for that
part

— Sum the match cost for the first part with the
distance transforms for the other parts

— Find location with minimum value in this sum
array (best match)

= DT allows for flexibility in part locations
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Overall Computation for Star Graph

= Distance transform non- reference part costs,
sum to get MAP location, O(mn) time
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More General Flexible Templates

= Efficient computation using distance
transforms for any tree-structured model

— Not limited to central reference part — star

= Two differences from reference part case

— Relate positions of parts to one another using
tree-structured recursion

e Solve with Viterbi or forward-backward
algorithm

— Parameterization of distance transform more
complex — transformation T; for each
connected pair of parts
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General Form of Problem

= Best location can be viewed in terms of
probability or cost (negative log prob.)
— max, p(L]I1,®)=argmax, p(I|L,A)p(L]|E,C)
—min_ Z, m(l}) + Z¢ d;(l3.1)
= m;(I;) — how well part v; matches image at |
o dij(li,lj) — how well locations Ii,Ij agree with model
(spring connecting parts v; and v;)
= Difficulty of maximization/minimization
depends on form of graph and pairwise
cost
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Minimizing Over Tree Structures

= Use dynamic programming to minimize
2y () + 2g di(l3,1)
= Can express as function for pairs B;(l))
— Cost of best location of v; given location |; of v,
= Recursive formulas in terms of children
C; of v;
— B;(1) = min; ( m;(l) + dy(l,1) + Z¢; B(I) )
— For leaf node no children, so last term empty

— For root node no parent, so second term
omitted
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Efficient Algorithm for Trees

= MAP estimation algorithm

— Tree structure allows use of Viterbi style
dynamic programming
e O(nh?) rather than O(h") for h locations, n parts
e Still slow to be useful in practice (h in millions)

— Couple with distance transform method for
finding best pair-wise locations in linear time

e Resulting O(nh) method

= Similar techniques allow sampling from
posterior distribution in O(nh) time

— Using forward-backward algorithm
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O(nh) Algorithm for MAP Estimate

= Express B;(l;) In recursive minimization
formulas as a DT D(T;(l;))
— Cost function
= f(y) = m(T;;71(y)) + 2¢; B(T;7H(Y))
— T;; maps locations to space where difference
between [; and |; is a squared distance

e Distance zero at ideal relative locations

* Yields n recursive equations

— Each can be computed in O(hD) time

e D is number of dimensions to parameter space
but is fixed (D generally 2 to 4)
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Sampling the Posterior

= Generate good possible matches as
hypotheses

— Locations where posterior p(L|1,0) large
— Validate using another technique
e Here use a correlation-like measure (Chamfer)
= Computation similar to MAP estimation
— Recursive equations, one per part

— Ability to solve each equation in linear time

e Linear time dynamic programming
approximation to Gaussian using box filters

— Running time under a minute for person model
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Sampling Approach

= Marginal distribution for location | of
(arbitrarily chosen) root part
p(1,0) = 2\ (Lly p(k,a) e p(i;lc))
= Can be computed efficiently due to tree
structured dependencies
P 1,0) < p(l]l,a) Ilcn sc()
— And fast convolution when p(l;,l;|c;;) Gaussian
sj(1) o« 2; (P(11;,3)) p(ililcy) [en sc(1))
= Sample location for root from marginal
— Sample from root to leaves using p(l;]};,1,0)
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Samples From Posterior
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Sampling from Proposal Distribution

= Can use to address limitations of models
— Non-Gaussian pairwise constraints

— Non-independence of individual part
appearance

= Use model that factors to propose high
probability answers according to a simpler
model

» Maximize a less tractable criterion only for
those sample configurations
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Weakly Supervised Learning

= Consider large number of initial patch
models to generate possible parts

— Ranked by likelihood of data given part

= Generate all pairwise models formed by
two Initial patches

= Consider all sets of reference parts for
fixed k

» Greedily add parts based on pairwise
models to produce initial models

— One per reference set
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Learning Spatial Model

= Estimate pairwise spatial models for all
pairs of patches — maximum likelihood

= Consider all k-tuples as root sets

= Use pairwise models to approximate true
spatial model

— Exact for 2-cligues (1-fan, star graph)

= Use EM to update model

— Iteratively improve both appearance and
spatial models
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A More Accurate Form of Model

* |ndependent part appearance can over
count evidence when parts overlap

— Address by changing form of image likelihood
= POP — patchwork of parts [ATO7]

More accurate model that accounts for
overlapping parts

Average probabilities of patches that overlap

e Distribution does not factor, can’t compute
efficiently

e (Can sample efficiently from factored distribution
and then maximize POP criterion




Example Learned Models

= Star graph (one fan)
— 24x24 patches
— Reference part in bold box
— Blue ellipse 2c level set of Gaussian

Side View of Car Side View of Bicycle

@
1(gg)f) Cornell Universit
5%%?2" ornell University




Spatial Models for Human Pose

= Widespread use of kinematic tree models

— Encode relationships between rigid parts
connected by joints (2D and 3D)

— Enables efficient exact inference/global
optimization of pose given model and data
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Limitations of Kinematic Trees

= Only represent relationships between
connected parts

= Coordination between limbs not encoded
— Critical for balance and many activities

|
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Equally good under tree model
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Addressing Limitations

= Sampling based approaches
— Probabilistic model

— Sample high posterior probability poses and
verify using other means (e.g, IFO1, FHO5)

e Tractable because posterior factors
&g@ &%

= Conditional random fields
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Our Approach: Richer Spatial Model

= | atent variables to encode additional
relationships — e.g., between upper limbs

— Low order (small cliques) to ensure efficient
optimization/inference

= In contrast to simply adding constraints
which can result in large clique

— Running time exponential in clique size




Learning Latent Variable Models

* First learn tree model [FHOO,FHO5]
— Maximum likelihood estimation

— Learn connections between parts and spatial
relations

* Yields kinematic tree automatically
— Lowest variability connections between parts
= Example using 240 labeled

side-walking frames in CMU
HumanlID dataset

— Shown at mean pose
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Ildentify Violations of Tree Model

= Conditional independence

— Parts with common “parent” should have
uncorrelated locations given location of parent

= Consider simple 2D human body model

— Pairwise relations parameterized by position,
orientation and scale

Head | Lf. Arm | Lf. Leg | Rt. Arm | Rt. Leg

Head | 1.00 0.00 -0.00 -0.06 0.00
Lf. Arm | 0.00 1.00 -0.58 -0.83 0.67
Lf. Leg | -0.00 -0.58 1.00 0.61 -0.43
Rt. Arm | -0.06 -0.83 0.61 1.00 -0.59
Rt. Leg | 0.00 0.67 -0.43 -0.59 1.00

Correlation in orientation given torso location




Test for Underlying Explanation

= Violations of conditional independence
correspond to additional constraints

O
— But don’t want to model with large clique
OO
= Determine whether simple parametric © ©

characterization of these constraints
— Use factor analysis to identify common factor
Y = N(AX,A)

— Factor loading vector A controls how scalar
factor X affects variables Y

— For human walking yields a single highly
predictive gait-cycle parameter (“swing’)
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Summary of Model Learning

= Learn a tree model from labeled training
data (max likelihood estimation)

» |ldentify parts that violate conditional
Independence of tree model
— With respect to common parent

= Use factor analysis to discover underlying
control variable(s)

= Introduce these latent variable(s) into the
tree model

— Yielding tree-like model
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Inference Using These Models

= \When value of latent variable is fixed,
have a tree

— Efficient exact inference using Viterbi, forward
or belief propagation algorithms

= Optimize over range of values of latent
variable

= Use generalized distance transform
methods to accelerate running time

— Still exact estimation (global optimum)
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Examples Using Brown MOCAP Data

= MAP estimate of best pose, single frame

%

Ground Truth Common Tree Model Clique Model
Factor Model Using LBP
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Results on Brown Seguence

= Per frame error, averaged over joints

]

= Per joint error, averaged over frames

shoulder | elbow | wrist | hip | knee | ankle

Factor 4.8 5.5 8.6 | 4.2 4.4 54
Tree 9.1 111 | 194 | 6.4 6.6 | 286
LBP 9.9 119 | 205 | 6.4 53| 205
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Examples

= Common factor
model

= Tree model
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