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Recap

= Last time covered perceptual organization
more broadly, focused in on pixel-wise
segmentation

= Covered local graph-based methods such
as MST and Felzenszwalb-Huttenlocher
method

= Today

— Cut-based methods such as grab cut,
normalized cuts

— Iterative local update methods such as mean
shift
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Cut Based Techniques

= For costs, natural to consider minimum
cost cuts

— Removing edges with smallest total cost, that
cut graph in two parts

— Graph only has finite-weight edges

= Manually assisted techniques, foreground
vs. background

= General segmentation, recursively cut
resulting components

— Question of when to stop
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Image Segmentation & Minimum Cut
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Segmentation by Min (s-t) Cut

‘ min cut
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[Boykov 01]

» Manually select a few fg and bg pixels

— Infinite cost link from each bg pixel to the
“” node, and each fg pixel to “s” node

— Compute min cut that separates s from t
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Grabcut [




Automatic Cut-Based Segmentation

Pq

» Fully-connected graph
— Node for every pixel

— Link between every pair of pixels, p,q
— Cost for each link measures similarity
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Drawbacks of Minimum Cut

= Weight of cut proportional to number of
edges — preference for small regions

— Motivation for Shi-Malik normalized cuts
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Normalized Cuts

= A number of normalization criteria have
been proposed

= One that is commonly used [Shi&Malik ]
cut(A,B) cut(A,B)

Ncut(A,B) = +
assoc(A,V) assoc(B,V)

= Where cut(A,B) Is standard definition
2icAjeB Wij
* And assoc(A,V) = 2; 2ica W




Computing Normalized Cuts

* Has been shown this Is equivalent to an
Integer programming problem, minimize
y' (D-W)y
y'Dy
= Subject to the constraint that y,e{1,b}
and y'D1=0
— Where 1 vector of all 1’s

= W is the affinity matrix

* D is the degree matrix (diagonal)
D(1,1) = 2 w;;




Approximating Normalized Cuts

= Integer programming problem NP hard

— Instead simply solve continuous (real-valued)
version

— This corresponds to finding second smallest
eigenvector of
(D-W)y; = % Dy,

= Widely used method

— Works well in practice
e Large eigenvector problem, but sparse matrices
e Often resolution reduce images, e.g, 100x100

— But no longer clearly related to cut problem
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Normalized Cut Examples
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Another Look [Weiss 99]

= Consider eigen analysis of affinity matrix
W = [ wj ]
— Note W is symmetric; for images w;=w;
— W also essentially block diagonal

 With suitable rearrangement of rows/cols so that
vertices with higher affinity have nearer indices

e Entries far from diagonal are small (though not
quite zero)

= Eigenvectors of W

— Recall for real, symmetric matrix forms an
orthogonal basis

 Axes of decreasing “importance”
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Structure of W

= Eigenvectors of block diagonal matrix
consist of eigenvectors of the blocks

— Padded with zeroes

= Note rearrangement so that clusters lie
near diagonal only conceptual

— Eigenvectors of permuted matrix are
permutation of original eigenvectors

= Can think of eigenvectors as being
assoclated with high affinity “clusters”

— Eigenvectors with large eigenvalues
— Approximately the case
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Structure of W

= Consider case of point set where affinities
w;=exp(-(Y;-y;)*/c?)
= With two clusters
— Points indexed to respect clusters for clarity

= Block diagonal form of W
— Within cluster affinities A, B for clusters
— Between cluster affinity C

“ A C
et W= [CT BJ
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First Eigenvector of W

= Recall, vectors x; satisfying Wx;=A;X;
= Consider ordered by eigenvalues 2,
— First eigenvector x,; has largest eigenvalue 2,

= Elements of first eigenvector serve as
“Index vector” [Perona,Freeman]

— Selecting elements of highest affinity cluster
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Clustering

* First eigenvector of W has been suggested
as clustering or segmentation criterion

— For selecting most significant segment
— Then recursively segment remainder

= Problematic when nonzero non-diagonal
blocks (similar affinity clusters)

Points in plane Elements of x;
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Understanding Normalized Cuts

* Intractable discrete graph problem used to
motivate continuous (real valued) problem

— Find second smallest “generalized eigenvector”
(D-W)x; = A,Dx;
— Where D is (diagonal) degree matrix d;= 2; w;;
= Can be viewed In terms of first two

eigenvectors of normalized affinity matrix
— Let N=D-1/2WD-1/2

— Note n;=w,/(Nd; Vd;)

e Affinity normalized by degree of the two nodes
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Normalized Affinities

= Can be shown that

— If X Is an eigenvector of N with eigenvalue A
then D-Y2x is a generalized eigenvector of W
with eigenvalue 1-A

— The vector D121 is an eigenvector of N with
eigenvalue 1

= |t follows that

— Second smallest generalized eigenvector of W
IS ratio of first two eigenvectors of N

— S0 ncut uses normalized affinity matrix N and
first two eigenvectors rather than affinity
matrix W and first eigenvector
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Contrasting W and N

= Three simple point clustering examples

— W, first eigenvector of W, ratio of first two
eigenvectors of N (generalized eigenvector of W)
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Image Segmentation

= Considering W and N for segmentation

— Affinity a negative exponential based on
distance in X,y,b space

| £ ap
= Eigenvectors of N more -
correlated with regions -

First 4
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Using More Eigenvectors

= Based on k largest eigenvectors

— Construct matrix Q such that (ideally) g;=1 if |
and j in same cluster, O otherwise

= Let V be matrix whose columns are first k
eigenvectors of W

= Normalize rows of V to have unit Euclidean
norm
— ldeally each node (row) in one cluster (col)

= et Q=VV!
— Each entry product of two unit vectors
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Normalization and k Eigenvectors

= Normalized affinities help correct for
variations in overall degree of affinity

— So compute Q for N instead of W

= Contrasting Q with ratio of first two
eigenvectors of N (ncut criterion)
— More clearly selects most significant region
e Using k=6 eigenvectors
— Row of Q matrix vs. ratio of eigenvectors of N
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Spectral Methods

= Eigenvectors of affinity and normalized
affinity matrices

= Widely used outside computer vision for

graph-based clustering

— Link structure of web pages, citation structure
of scientific papers

— Often directed rather than undirected graphs
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Iterative Clustering Methods

* Techniques such as k-means, but for

Image segmentation generally have no
Idea about number of regions

* Mean-shift a nonparametric method
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Finding Modes in a Histogram
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* How Many Modes Are There?
— Easy to see, less easy to compute
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Mean Shift [ comaniciu & Meer]
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= |terative Mode Search

1. Initialize random seed, and window W
2. Calculate center of gravity ( “mean’”) of W and shift
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Mean Shift

» Used both for segmentation and for edge
preserving filtering

= Operates on collection of points
X={Xq, ..., X, } in R¢

= Replace each point with value derived
from mean shift procedure
— Searches for a local density maximum by

repeatedly shifting a d-dimensional hyper-
sphere of fixed radius h

— Differs from most clustering, such as k-means
In that no fixed number of clusters
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Mean Shift Procedure

= For given point xeX lety,, ..., y; denote
successive locations of that point
Y1=X

Yir1 =L/ ISV 2xcsiyiog X

— Where S(y,) iIs the subset of X contained in a
hyper-sphere of radius h centered at y,

e The radius h is a fixed parameter of the method

= For a point set X, the mean shift
procedure iIs applied separately to all the
points
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Mean-Shift

= Initialize window around each point
— Where it shifts determines which region it’s in
— Multiple points will shift to the same region
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Mean Shift Image Filtering

= Map each image pixel to point in u,v,b
space
X;i=(U;,V;,bi/o)
— Analogous for color images, with three intensity
values instead of one
— Scale factor o normalizes intensity vs. spatial
dimensions
= Perform mean shift for each point
— Let Y;,=(U;,Vi,B;) denote mean shifted value
= Assign result z=(u,,v;,B;)
— Original spatial coords, mean shifted intensity
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Mean Shift Example
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Mean Shift Example

Figue 2 The howse lmage, 233 x 192 pixels. 0603
colors.
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Edge Preserving Filtering

= Mean shift tends to preserve edges

= Edges are where intensity is changing
rapidly

= Rapid changes in intensity will result In
lower density regions in joint spatial-
Intensity space

= Mean shift finds local density maxima
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Mean Shift Clustering

= Run mean shift procedure for each point

= Cluster resulting convergence points that
closer than some small constant

= Assign each point label of its cluster

= Analogous to filtering, but with added step
of merging cluster that are nearby In the
joint spatial-intensity domain
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About Mean Shift

= Convergence to local density maximum
— Where “local” determined by sphere radius

= Consider simple point set

= Over wide range of sphere radii end up
with two clusters

— Relationship to MST

é‘f@j@ Cornell University
s




