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Recap

Last time covered perceptual organization 
more broadly, focused in on pixel-wise 
segmentation
Covered local graph-based methods such 
as MST and Felzenszwalb-Huttenlocher 
method
Today
– Cut-based methods such as grab cut, 

normalized cuts
– Iterative local update methods such as mean 

shift



3

Cut Based Techniques

For costs, natural to consider minimum 
cost cuts
– Removing edges with smallest total cost, that 

cut graph in two parts
– Graph only has finite-weight edges

Manually assisted techniques, foreground 
vs. background
General segmentation, recursively cut 
resulting components
– Question of when to stop



4

Image Segmentation & Minimum Cut
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Segmentation by Min (s-t) Cut

Manually select a few fg and bg pixels
– Infinite cost link from each bg pixel to the 

“t” node, and each fg pixel to “s” node
– Compute min cut that separates s from t

t s

min cut

[Boykov 01]
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Grabcut [Rother et al., SIGGRAPH 
2004]
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q

Automatic Cut-Based Segmentation

Fully-connected graph
– Node for every pixel
– Link between every pair of pixels, p,q
– Cost for each link measures similarity

p

Cpq

c
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Drawbacks of Minimum Cut

Weight of cut proportional to number of 
edges – preference for small regions
– Motivation for Shi-Malik normalized cuts

“Ideal Cut”

Cuts with 
lesser weight
than the 
ideal cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Normalized Cuts

A number of normalization criteria have 
been proposed
One that is commonly used [Shi&Malik ]

Where cut(A,B) is standard definition
∑i∈A,j∈B wij

And assoc(A,V) = ∑j ∑i∈A wij

Ncut(A,B) = 
cut(A,B) cut(A,B)

assoc(B,V)assoc(A,V)
+
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Computing Normalized Cuts

Has been shown this is equivalent to an 
integer programming problem, minimize

yT (D-W)y
yT D y

Subject to the constraint that yi∈{1,b} 
and yTD1=0
– Where 1 vector of all 1’s

W is the affinity matrix
D is the degree matrix (diagonal)

D(i,i) = ∑j wij
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Approximating Normalized Cuts

Integer programming problem NP hard
– Instead simply solve continuous (real-valued) 

version
– This corresponds to finding second smallest 

eigenvector of
(D-W)yi = λi Dyi

Widely used method
– Works well in practice

• Large eigenvector problem, but sparse matrices
• Often resolution reduce images, e.g, 100x100

– But no longer clearly related to cut problem
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Normalized Cut Examples
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Another Look [Weiss 99]

Consider eigen analysis of affinity matrix
W = [ wij ]

– Note W is symmetric; for images wij=wji

– W also essentially block diagonal
• With suitable rearrangement of rows/cols so that 

vertices with higher affinity have nearer indices
• Entries far from diagonal are small (though not 

quite zero)

Eigenvectors of W
– Recall for real, symmetric matrix forms an 

orthogonal basis
• Axes of decreasing “importance”
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Structure of W

Eigenvectors of block diagonal matrix 
consist of eigenvectors of the blocks
– Padded with zeroes

Note rearrangement so that clusters lie 
near diagonal only conceptual
– Eigenvectors of permuted matrix are 

permutation of original eigenvectors

Can think of eigenvectors as being 
associated with high affinity “clusters”
– Eigenvectors with large eigenvalues
– Approximately the case
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Structure of W

Consider case of point set where affinities 
wij=exp(-(yi-yj)2/σ2)

With two clusters
– Points indexed to respect clusters for clarity

Block diagonal form of W
– Within cluster affinities A, B for clusters
– Between cluster affinity C

A
B
C

CTW=
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First Eigenvector of W

Recall, vectors xi satisfying Wxi=λixi

Consider ordered by eigenvalues λi

– First eigenvector x1 has largest eigenvalue λ1

Elements of first eigenvector serve as 
“index vector” [Perona,Freeman]
– Selecting elements of highest affinity cluster

Points in plane
Elements of x1W

Magnitude 
of elements
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Clustering

First eigenvector of W has been suggested 
as clustering or segmentation criterion
– For selecting most significant segment
– Then recursively segment remainder

Problematic when nonzero non-diagonal 
blocks (similar affinity clusters)

Points in plane Elements of x1W
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Understanding Normalized Cuts

Intractable discrete graph problem used to 
motivate continuous (real valued) problem
– Find second smallest “generalized eigenvector”

(D-W)xi = λiDxi

– Where D is (diagonal) degree matrix dii= ∑j wij

Can be viewed in terms of first two 
eigenvectors of normalized affinity matrix
– Let N=D-1/2WD-1/2

– Note nij=wij/(√dii √djj)
• Affinity normalized by degree of the two nodes
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Normalized Affinities

Can be shown that
– If x is an eigenvector of N with eigenvalue λ

then D-1/2x is a generalized eigenvector of W 
with eigenvalue 1-λ

– The vector D-1/21 is an eigenvector of N with 
eigenvalue 1

It follows that 
– Second smallest generalized eigenvector of W 

is ratio of first two eigenvectors of N
– So ncut uses normalized affinity matrix N and 

first two eigenvectors rather than affinity 
matrix W and first eigenvector
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Contrasting W and N

Three simple point clustering examples
– W, first eigenvector of W, ratio of first two 

eigenvectors of N (generalized eigenvector of W)
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Image Segmentation

Considering W and N for segmentation
– Affinity a negative exponential based on 

distance in x,y,b space

Eigenvectors of N more
correlated with regions

First 4 
eigenvectors 

of W

First 4 
eigenvectors 

of N
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Using More Eigenvectors

Based on k largest eigenvectors
– Construct matrix Q such that (ideally) qij=1 if i 

and j in same cluster, 0 otherwise

Let V be matrix whose columns are first k 
eigenvectors of W
Normalize rows of V to have unit Euclidean 
norm
– Ideally each node (row) in one cluster (col)

Let Q=VVT

– Each entry product of two unit vectors
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Normalization and k Eigenvectors

Normalized affinities help correct for 
variations in overall degree of affinity
– So compute Q for N instead of W

Contrasting Q with ratio of first two 
eigenvectors of N (ncut criterion)
– More clearly selects most significant region

• Using k=6 eigenvectors

– Row of Q matrix vs. ratio of eigenvectors of N

Q QN N
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Spectral Methods

Eigenvectors of affinity and normalized 
affinity matrices
Widely used outside computer vision for 
graph-based clustering
– Link structure of web pages, citation structure 

of scientific papers
– Often directed rather than undirected graphs
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Iterative Clustering Methods

Techniques such as k-means, but for 
image segmentation generally have no 
idea about number of regions
Mean-shift a nonparametric method
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Finding Modes in a Histogram

How Many Modes Are There?
– Easy to see, less easy to compute
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Mean Shift [Comaniciu & Meer]

Iterative Mode Search
1. Initialize random seed, and window W
2. Calculate center of gravity ( “mean”) of W and shift 



28

Mean Shift

Used both for segmentation and for edge 
preserving filtering
Operates on collection of points 
X={x1, …, xn} in Rd

Replace each point with value derived 
from mean shift procedure
– Searches for a local density maximum by 

repeatedly shifting a d-dimensional hyper-
sphere of fixed radius h

– Differs from most clustering, such as k-means 
in that no fixed number of clusters
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Mean Shift Procedure

For given point x∈X let y1, …, yT denote 
successive locations of that point

y1=x

yk+1 =1/|S(yk)| ∑x∈S(yk) x
– Where S(yk) is the subset of X contained in a 

hyper-sphere of radius h centered at yk

• The radius h is a fixed parameter of the method 

For a point set X, the mean shift 
procedure is applied separately to all the 
points 
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Mean-Shift

Initialize window around each point
– Where it shifts determines which region it’s in
– Multiple points will shift to the same region
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Mean Shift Image Filtering

Map each image pixel to point in u,v,b 
space

xi=(ui,vi,bi/σ)

– Analogous for color images, with three intensity 
values instead of one

– Scale factor σ normalizes intensity vs. spatial 
dimensions

Perform mean shift for each point
– Let Yi=(Ui,Vi,Bi) denote mean shifted value

Assign result zi=(ui,vi,Bi)
– Original spatial coords, mean shifted intensity
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Mean Shift Example
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Mean Shift Example
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Edge Preserving Filtering

Mean shift tends to preserve edges
Edges are where intensity is changing 
rapidly
Rapid changes in intensity will result in 
lower density regions in joint spatial-
intensity space
Mean shift finds local density maxima
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Mean Shift Clustering

Run mean shift procedure for each point
Cluster resulting convergence points that 
closer than some small constant
Assign each point label of its cluster 
Analogous to filtering, but with added step 
of merging cluster that are nearby in the 
joint spatial-intensity domain
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About Mean Shift

Convergence to local density maximum
– Where “local” determined by sphere radius

Consider simple point set

Over wide range of sphere radii end up 
with two clusters
– Relationship to MST


