

CS 664 Segmentation (2)

Daniel Huttenlocher

Recap

- Last time covered perceptual organization more broadly, focused in on pixel-wise segmentation
- Covered local graph-based methods such as MST and Felzenszwalb-Huttenlocher method
- Today
 - Cut-based methods such as grab cut, normalized cuts
 - Iterative local update methods such as mean shift

Cut Based Techniques

- For costs, natural to consider minimum cost cuts
 - Removing edges with smallest total cost, that cut graph in two parts
 - Graph only has finite-weight edges
- Manually assisted techniques, foreground vs. background
- General segmentation, recursively cut resulting components
 - Question of when to stop

Image Segmentation & Minimum Cut

Segmentation by Min (s-t) Cut

- Manually select a few fg and bg pixels
 - Infinite cost link from each bg pixel to the "t" node, and each fg pixel to "s" node
 - Compute min cut that separates s from t

Grabcut

[Rother et al., SIGGRAPH 2004]

Automatic Cut-Based Segmentation

- Fully-connected graph
 - Node for every pixel
 - Link between every pair of pixels, p,q
 - Cost for each link measures similarity

Drawbacks of Minimum Cut

- Weight of cut proportional to number of edges – preference for small regions
 - Motivation for Shi-Malik normalized cuts

Normalized Cuts

- A number of normalization criteria have been proposed
- One that is commonly used [Shi&Malik]

Ncut(A,B) =
$$\frac{\text{cut(A,B)}}{\text{assoc(A,V)}} + \frac{\text{cut(A,B)}}{\text{assoc(B,V)}}$$

Where cut(A,B) is standard definition

$$\sum_{i \in A, j \in B} W_{ij}$$

• And assoc(A,V) = $\sum_{j} \sum_{i \in A} w_{ij}$

Computing Normalized Cuts

 Has been shown this is equivalent to an integer programming problem, minimize

$$\frac{y^{T} (D-W)y}{y^{T} D y}$$

- Subject to the constraint that y_i∈{1,b} and y^TD1=0
 - Where 1 vector of all 1's
- W is the affinity matrix
- D is the degree matrix (diagonal)

$$D(i,i) = \sum_{j} w_{ij}$$

Approximating Normalized Cuts

- Integer programming problem NP hard
 - Instead simply solve continuous (real-valued) version
 - This corresponds to finding second smallest eigenvector of

$$(D-W)y_i = \lambda_i Dy_i$$

- Widely used method
 - Works well in practice
 - Large eigenvector problem, but sparse matrices
 - Often resolution reduce images, e.g, 100x100
 - But no longer clearly related to cut problem

Normalized Cut Examples

Another Look [Weiss 99]

- Consider eigen analysis of affinity matrix
 W = [w_{ii}]
 - Note W is symmetric; for images w_{ij}=w_{ji}
 - W also essentially block diagonal
 - With suitable rearrangement of rows/cols so that vertices with higher affinity have nearer indices
 - Entries far from diagonal are small (though not quite zero)
- Eigenvectors of W
 - Recall for real, symmetric matrix forms an orthogonal basis
 - Axes of decreasing "importance"

Structure of W

- Eigenvectors of block diagonal matrix consist of eigenvectors of the blocks
 - Padded with zeroes
- Note rearrangement so that clusters lie near diagonal only conceptual
 - Eigenvectors of permuted matrix are permutation of original eigenvectors
- Can think of eigenvectors as being associated with high affinity "clusters"
 - Eigenvectors with large eigenvalues
 - Approximately the case

Structure of W

• Consider case of point set where affinities $w_{ij} = \exp(-(y_i-y_j)^2/\sigma^2)$

- With two clusters
 - Points indexed to respect clusters for clarity
- Block diagonal form of W
 - Within cluster affinities A, B for clusters
 - Between cluster affinity C

$$M = \begin{pmatrix} C_{L} & B \\ C_{L} & B \end{pmatrix}$$

First Eigenvector of W

- Recall, vectors x_i satisfying Wx_i=λ_ix_i
- Consider ordered by eigenvalues λ_i
 - First eigenvector x_1 has largest eigenvalue λ_1
- Elements of first eigenvector serve as "index vector" [Perona, Freeman]
 - Selecting elements of highest affinity cluster

Clustering

- First eigenvector of W has been suggested as clustering or segmentation criterion
 - For selecting most significant segment
 - Then recursively segment remainder
- Problematic when nonzero non-diagonal blocks (similar affinity clusters)

Understanding Normalized Cuts

- Intractable discrete graph problem used to motivate continuous (real valued) problem
 - Find second *smallest* "generalized eigenvector" $(D-W)x_i = \lambda_i Dx_i$
 - Where D is (diagonal) degree matrix $d_{ii} = \sum_{j} w_{ij}$
- Can be viewed in terms of first two eigenvectors of normalized affinity matrix
 - Let $N = D^{-1/2}WD^{-1/2}$
 - Note $n_{ij} = w_{ij} / (\sqrt{d_{ii}} \sqrt{d_{jj}})$
 - Affinity normalized by degree of the two nodes

Normalized Affinities

- Can be shown that
 - If x is an eigenvector of N with eigenvalue λ then D^{-1/2}x is a generalized eigenvector of W with eigenvalue 1- λ
 - The vector D^{-1/2}1 is an eigenvector of N with eigenvalue 1
- It follows that
 - Second smallest generalized eigenvector of W is ratio of first two eigenvectors of N
 - So ncut uses normalized affinity matrix N and first two eigenvectors rather than affinity matrix W and first eigenvector

Contrasting W and N

- Three simple point clustering examples
 - W, first eigenvector of W, ratio of first two eigenvectors of N (generalized eigenvector of W)

Image Segmentation

- Considering W and N for segmentation
 - Affinity a negative exponential based on distance in x,y,b space
- Eigenvectors of N more correlated with regions

First 4 eigenvectors of W

First 4 eigenvectors of N

Using More Eigenvectors

- Based on k largest eigenvectors
 - Construct matrix Q such that (ideally) $q_{ij}=1$ if i and j in same cluster, 0 otherwise
- Let V be matrix whose columns are first k eigenvectors of W
- Normalize rows of V to have unit Euclidean norm
 - Ideally each node (row) in one cluster (col)
- Let Q=VV^T
 - Each entry product of two unit vectors

Normalization and k Eigenvectors

- Normalized affinities help correct for variations in overall degree of affinity
 - So compute Q for N instead of W
- Contrasting Q with ratio of first two eigenvectors of N (ncut criterion)
 - More clearly selects most significant region
 - Using k=6 eigenvectors
 - Row of Q matrix vs. ratio of eigenvectors of N

Spectral Methods

- Eigenvectors of affinity and normalized affinity matrices
- Widely used outside computer vision for graph-based clustering
 - Link structure of web pages, citation structure of scientific papers
 - Often directed rather than undirected graphs

Iterative Clustering Methods

- Techniques such as k-means, but for image segmentation generally have no idea about number of regions
- Mean-shift a nonparametric method

Finding Modes in a Histogram

- How Many Modes Are There?
 - Easy to see, less easy to compute

Mean Shift [Comaniciu & Meer]

Iterative Mode Search

- 1. Initialize random seed, and window W
- 2. Calculate center of gravity ("mean") of W and shift

Mean Shift

- Used both for segmentation and for edge preserving filtering
- Operates on collection of points $X = \{x_1, ..., x_n\}$ in R^d
- Replace each point with value derived from mean shift procedure
 - Searches for a local density maximum by repeatedly shifting a d-dimensional hypersphere of fixed radius h
 - Differs from most clustering, such as k-means in that no fixed number of clusters

Mean Shift Procedure

■ For given point $x \in X$ let $y_1, ..., y_T$ denote successive locations of that point

$$y_1 = x$$

 $y_{k+1} = 1/|S(y_k)| \sum_{x \in S(y^k)} x$

- Where $S(y_k)$ is the subset of X contained in a hyper-sphere of radius h centered at y_k
 - The radius h is a fixed parameter of the method
- For a point set X, the mean shift procedure is applied separately to all the points

Mean-Shift

- Initialize window around each point
 - Where it shifts determines which region it's in
 - Multiple points will shift to the same region

Mean shift trajectories

Mean Shift Image Filtering

 Map each image pixel to point in u,v,b space

$$x_i = (u_i, v_i, b_i/\sigma)$$

- Analogous for color images, with three intensity values instead of one
- Scale factor σ normalizes intensity vs. spatial dimensions
- Perform mean shift for each point
 - Let $Y_i = (U_i, V_i, B_i)$ denote mean shifted value
- Assign result z_i=(u_i,v_i,B_i)
 - Original spatial coords, mean shifted intensity

Mean Shift Example

Mean Shift Example

Figure 2: The house image, 255×192 pixels, 9603 colors.

Edge Preserving Filtering

- Mean shift tends to preserve edges
- Edges are where intensity is changing rapidly
- Rapid changes in intensity will result in lower density regions in joint spatialintensity space
- Mean shift finds local density maxima

Mean Shift Clustering

- Run mean shift procedure for each point
- Cluster resulting convergence points that closer than some small constant
- Assign each point label of its cluster
- Analogous to filtering, but with added step of merging cluster that are nearby in the joint spatial-intensity domain

About Mean Shift

- Convergence to local density maximum
 - Where "local" determined by sphere radius
- Consider simple point set

- Over wide range of sphere radii end up with two clusters
 - Relationship to MST