CS 664
Segmentation

Daniel Huttenlocher

7ieme Cornell University

7 Faculty of Computing and Information Science

Perceptual Organization

= Grouping
— Structural relationships between “tokens”
e Parallelism, symmetry, alignment
e Similarity of token properties
e Often strong psychophysical cues

= Segmentation

— Clustering pixels into regions
e Generally contiguous in image, not always

— Over-segmentation has proven useful,
commonly termed super-pixels

é‘f@j@ Cornell University
s

What’s This Image”?

é‘f@j@ Cornell University
s

Beyond “Figure/Ground”

= Gestalt movement, properties and
relations that form “percept as a whole”

é‘f@j@ Cornell University
s

Important Structural Relations

%f;né)? Cornell University

(

5 '\&7

{

J

Parallelism

Symmetry

Continuity

Closure

Occluding Contours and Percept

Importance of Context to Percept

= Famous Muller-Lyer lllusion

%f;né)? Cornell University

Grouping: lllusory Contours

C%C%¢C
CILIGI

C)))

« > €CI

O
O

Figure/Ground Separation

* Find foreground by subtracting out
previously obtained background image

* In practice background usually not
stationary, so simple subtraction not good

= Model background

— For fixed camera, Gaussian intensity model for
each pixel has proven effective
[Stauffer&Grimson]

e Test fit of observed pixel value to distribution

e Update background distribution at some slow
rate, for inliers

é‘f@j@ Cornell University
s

Non-Stationary Pixels

= Trees, bushes, water, flags, ...
= Changes in lighting over time

= E.g., bimodal distribution of intensity at a
given “water” pixel over a few minutes

@ Cornell University

Background Modeling

= Binary image of outlier pixels from
Gaussian background models

— Small differences reliable enough to often
correspond to actual objects

e E.g., pedestrians in this scene

— Camera_| = | []]|[= Connected [+ 11
o)

L

é‘f@j@ Cornell University
S

Simple Tracker

= Determination of foreground/background
In this manner yields data good for simple
tracking

— E.g., Kalman filter for each object estimating
position and velocity vector

=. Camera i a i[]

Segmenting Single Images

* Find regions of image that are “coherent”

= “Dual” of edge detection
— Regions vs. boundaries

» Related to clustering problems
— Early work in image processing and clustering

= Many approaches

— Graph-based
e Cuts, spanning trees, MRF methods
— Feature space clustering

— Mean shift

@
1@&=lL C 11 Universit
5%%?2" ornell University

Motivating Example

= Coherent regions independent of
particular objects or recognition

This image has three
perceptually distinct regions

Where are largest intensity
differences?

%f;né)? Cornell University

Graph Based Formulations

= G=(V,E) with vertices corresponding to pixels
and edges connecting neighboring pixels

EEEE 4-connected or 8-conneted

= Weight of edge Is measure of difference (or
affinity) between connected pixels

= A segmentation, S, iIs a partition of V such
that each CeS iIs connected

é‘f@j@ Cornell University
s

Forms of Affinity Measure

= Intensity

aff (x,y)= exp{—(205)@ (x)- I(Y]\z)}
= Distance

aff (x, y):exp{ ZGd/GX I)}
= Texture

) =exp| | 15,2 (o000

Important Characteristics

= Efficiency
— Run in time essentially linear in the number of
Image pixels
e With low constant factors
e E.g., compared to edge detection
= Understandable output
— Way to describe what algorithm does
e E.g., Canny edge operator and step edge plus noise
= Not purely local
— Perceptually important

é‘f@j@ Cornell University
s

Motivating Example

= Purely local criteria are
Inadequate
— Difference along border between

A and B is less than differences
within C

= Criteria based on piecewise
constant regions are
Inadequate (e.g., Potts MRF)

— Will arbitrarily split A into
subparts

%f;né)? Cornell University

MST Based Approaches

» Graph-based representation
— Nodes corresponding to pixels, edge weights are
Intensity difference between connected pixels
= Compute minimum spanning tree (MST)
— Cheapest way to connect all pixels into single
component or “region”
= Selection criterion

— Remove certain MST edges to form components
e Fixed threshold

e Threshold based on neighborhood
— How to find neighborhood

é‘f@j@ Cornell University
s

Measure Whole Components

= Consider properties of two components
being merged when adding an edge
[Felzenszwalb 04]
— Rather than MST based on local edge weights

» Recall Kruskal’s MST algorithm adds edges
from lowest to highest weight
— Only when connect distinct components

= Apply criterion based on components to
further filter added edges

— Form of criterion limited by considering edges
weight ordered

é‘f@j@ Cornell University
s

Measuring Component Difference

= Let internal difference of a component be
maximum edge weight in its MST
Int(C) = max ¢ ysrcg) W(E)

— Smallest weight such that all pixels of C are
connected by edges of at most that weight

» et difference between two components be
minimum edge weight connecting them

DIt(C,Cy) =min . ¢ vjeCy w((v; V)
— Note: infinite if there is no such edge

é‘f@j@ Cornell University
s

Region Comparison Function

= Two components judged to be distinct when
Dif(C, C,) large relative to Int(C,) or Int(C,)

— Require that it be sufficiently larger
— Controlled by (non-negative) threshold function =

= Region comparison function g(C,C,) Is true
when regions should be distinct, I.e., when
Dif(C, C,) > MInt(C, C,)
where Mint(C, C,)
= min(Int(C,)+C,), Int(C,)+#(C,))

About the Threshold Function 7

= Intuitively Int(C) estimates local differences
over component

— Small components give underestimate of local
difference — neighboring pixels tend to be similar

e Thus 7 should be large in this case

= Use a function inversely proportional to
component size «{C) =k/|C|
— k Is a parameter of the method that captures
“scale of observation”
e Larger k means prefer larger components

— Other functions possible, e.g., based on shape
Qf@ Cornell University

Algorithm
0. Sort edges of E into (ey, ..., &,), in order of non-
decreasing edge weight
1. Initialize S with one component per pixel

2. Foreachegin (e, ..., ;) do step 3

3. If weight of e, small relative to internal
difference of components it connects then
merge components, otherwise do nothing

l.e., if w(ey) < MInt(C; C)), where C; C;€S
are distinct components connected by €y
then update S by merging C; and C;

é‘f@j@ Cornell University
s

Regions Found by the Algorithm

A B C
= Three main regions plus a few small ones

= Why the algorithm stops growing these

— Weight of edges between A and B large wrt max
weight MST edges of A and of B

— Weight of edges between B and C large wrt max
weight MST edge of B (but not of C)

%f;né)? Cornell University

Criteria for a Good Segmentation

» Some predicate for comparing two regions

— Intuitively, evaluates whether there is evidence for
a boundary between two regions

= A segmentation is too fine when predicate
says no evidence for a boundary

— Some pair of neighboring regions where predicate
false

= A segmentation is too coarse when there is
some refinement that is not too fine

— A refinement is obtained by splitting one or more
regions of a segmentation

@
1@&=lL C 11 Universit
5%%?2" ornell University

Good Segmentations and the
Example

= Splitting A, Bor C
would be too fine

= Not splitting A from B
or B from C would be A B C
too coarse

@ Cornell University

Other Algorithms and the Criteria

= Piecewise constant regions (or compact
clusters in a color-based feature space)
— Too fine: arbitrarily split ramp in A into pieces
= Breaking high cost edges in the MST of a

graph corresponding to the image

— Both: merge A with B or split C into multiple
pieces

%f;né)? Cornell University

Properties of the Algorithm

= |t is fast, O(nlog n) for sorting in step O and
O(n(n)) for the remaining steps

— Using union-find with path compression to
represent the partition, S

* |t produces good segmentations

— Neither too coarse nor too fine according to the
above definitions

e Despite being a greedy algorithm
* |t yields the same results regardless of the
order that equal-weight edges are considered

— Proof a bit involved, won’t discuss here
Qf@;@ Cornell University

Components “Freeze”

= When two components do not merge, one will
be a component of the final segmentation

— A merge decision is made for an edge ¢, and the
two components that it connects C;, C;

— Say the merge does not occur because w(e,) >
Int(C;)+7(C))
e Then any subsequent merge involving C; will also

not occur, because edges are considered in non-
decreasing weight order

— Analogous for C;, so when a merge fails one or
both of the components involved “freeze”

é‘f@j@ Cornell University
s

Segmentation Not Too Fine

= Follows readily from fact that components
“freeze”

— An edge between two components in final
segmentation implies the algorithm decided not to
merge when considering this edge

e Component that caused this decision is frozen, so
appears in the final segmentation

* Thus the decision that was true when the
edge was considered remains true for the
final segmentation

Qf@} Cornell University
i

Segmentation Not Too Coarse

* Means any proper refinement is too fine

= Suppose was a proper refinement, T, of the
final segmentation, S, that is not too fine
— Consider the minimum weight edge, e, that is

between two components A,B of T but is within a
single component C of S

%f;né)? Cornell University

Sketch Continued

= All edges in MST of either A or B have
weights smaller than w(e), say it ISA

— Definition of not too fine, and predicate
* Thus algorithm creates A before
considering e

— Because all edges on boundary of A, but internal
to C, have weight larger than w(e)

= Since T not too fine, the decision criterion
Implies the algorithm would freeze A when
considering e

%f;né)? Cornell University

Closely Related Problems Hard

= What appears to be a slight change
— Make Dif be quantile instead of min

k-th ViEC]_, Vj€C2 W((VLVJ))

— Desirable for addressing “cheap path” problem
of merging based on one low cost edge

= Makes problem NP hard
— Reduction from min ratio cut
e Ratio of “capacity” to “demand” between nodes

= Other methods that we will see are also
NP hard and approximated in various ways

é‘f@j@ Cornell University
s

Some Implementation Issues

= Smooth images slightly before processing
— Remove high variation due to digitization artifacts

= Sorting I1s dominant time In processing

— For known edge distribution can in principle do
better by binning

= Treat color images as three separate images

— Components of segmentation are “intersection” of
components from each of the three color planes

e Motivation: significant change in any color
channel should result in a region boundary

@
1@&=lL C 11 Universit
5%%?2" ornell University

Some Example Segmentations

k=300
320 components
larger than 10

s —
faf = o c
i\ Cornell University

k=200
323 components
larger than 10

Some Shortcomings

= Smoothing can introduce problems
— “Extra regions” at boundaries
— Creates “ramps” between regions, thus merge

"
faf = o c
i\Es)s Cornell University

Simple Object Examples

~=
el v

%f;né)? Cornell University

Monochrome Example

= Components locally connected (grid graph)
— Sometimes not desirable

SIEREINS i i
d % Cornell University

Clustering: Non-Local Components

= Points in d-dimensional space

— Vertex for each point, edge weights based on
distance in this space

= Intuitively, Int measures “density” of clusters

— Smallest dilation radius such that all points in the
cluster are connected

— When clusters separated by nearly same distance
as their “densities” then segmentation is too fine

= For efficiency use a graph with O(]V|) edges

— Use Mount’s approximate nearest neighbor
algorithm to find nearest neighbors

@
1@&=lL C 11 Universit
5%%?2" ornell University

Clustering Gaussian Point Data

Graph connecting
four nearest

Note: Gaussian not b

constant density nei?hbors to each
vertex
k=1

3 largest clusters, 75% classified 5 largest clusters, 95% classified

Clustering for Image
Segmentation

= Treat each pixel as a point in a feature space

— More than just local intensity or color, incorporate
spatial, texture, motion or other differences

= Now regions of segmentation need not be
connected In Image

= Practical issue, relatively expensive to find
nearest neighbors for graph

— Can use neighbors in some fixed distance, but
restricts regions that can be found

— In examples here use 4 nearest neighbors

@
1@&=lL C 11 Universit
5%%?2" ornell University

Example Clustering of Image Data

= Segmentation using difference in R,G,B
values and in position

— Distance of 5 pixels same as 1 intensity unit

Non-Local
Component

"
faf = o c
i\Es)s Cornell University

About Clustering for Image Data

» Meaningful regions in image are not
necessarily compact in feature space

= Cheap path in feature space not always
apparent in image

%f;né)? Cornell University

Additional Example

= High variability in illuminated tower pixels

@ Cornell University

Beyond Grid Graphs

* Image segmentation methods using
affinity (or cost) matrices
— For each pair of vertices v;,v; an associated
weight w;;
e Affinity If larger when vertices more related
e Cost if larger when vertices less related

— Matrix W=[w;;] of affinities or costs
e W is large, avoid constructing explicitly

e For images affinities tend to be near zero except
for pixels that are nearby

— E.g., decrease exponentially with distance

» \\V is sparse
Qf@} Cornell University

