
CS 664
Segmentation

Daniel Huttenlocher

2

Perceptual Organization

Grouping
– Structural relationships between “tokens”

• Parallelism, symmetry, alignment
• Similarity of token properties
• Often strong psychophysical cues

Segmentation
– Clustering pixels into regions

• Generally contiguous in image, not always

– Over-segmentation has proven useful,
commonly termed super-pixels

3

What’s This Image?

4

Beyond “Figure/Ground”

Gestalt movement, properties and
relations that form “percept as a whole”

5

Important Structural Relations

6

Occluding Contours and Percept

7

Importance of Context to Percept

Famous Muller-Lyer Illusion

8

Grouping: Illusory Contours

9

Figure/Ground Separation

Find foreground by subtracting out
previously obtained background image
In practice background usually not
stationary, so simple subtraction not good
Model background
– For fixed camera, Gaussian intensity model for

each pixel has proven effective
[Stauffer&Grimson]
• Test fit of observed pixel value to distribution
• Update background distribution at some slow

rate, for inliers

10

Non-Stationary Pixels

Trees, bushes, water, flags, …
Changes in lighting over time
E.g., bimodal distribution of intensity at a
given “water” pixel over a few minutes

11

Background Modeling

Binary image of outlier pixels from
Gaussian background models
– Small differences reliable enough to often

correspond to actual objects
• E.g., pedestrians in this scene

12

Simple Tracker

Determination of foreground/background
in this manner yields data good for simple
tracking
– E.g., Kalman filter for each object estimating

position and velocity vector

13

Segmenting Single Images

Find regions of image that are “coherent”
“Dual” of edge detection
– Regions vs. boundaries

Related to clustering problems
– Early work in image processing and clustering

Many approaches
– Graph-based

• Cuts, spanning trees, MRF methods

– Feature space clustering
– Mean shift

14

Coherent regions independent of
particular objects or recognition

This image has three
perceptually distinct regions

Where are largest intensity
differences?

Motivating Example

15

Graph Based Formulations

G=(V,E) with vertices corresponding to pixels
and edges connecting neighboring pixels

Weight of edge is measure of difference (or
affinity) between connected pixels
A segmentation, S, is a partition of V such
that each C∈S is connected

4-connected or 8-conneted

16

Forms of Affinity Measure

Intensity

Distance

Texture

aff x, y()= exp − 1
2σ i

2
⎛
⎝

⎞
⎠ I x()− I y() 2()⎧

⎨
⎩

⎫
⎬
⎭

aff x, y()= exp − 1
2σ d

2
⎛
⎝

⎞
⎠ x − y 2()⎧

⎨
⎩

⎫
⎬
⎭

aff x, y()= exp − 1
2σ t

2
⎛
⎝

⎞
⎠ c x()− c y() 2()⎧

⎨
⎩

⎫
⎬
⎭

17

Important Characteristics

Efficiency
– Run in time essentially linear in the number of

image pixels
• With low constant factors
• E.g., compared to edge detection

Understandable output
– Way to describe what algorithm does

• E.g., Canny edge operator and step edge plus noise

Not purely local
– Perceptually important

18

Motivating Example

Purely local criteria are
inadequate
– Difference along border between

A and B is less than differences
within C

Criteria based on piecewise
constant regions are
inadequate (e.g., Potts MRF)
– Will arbitrarily split A into

subparts

B CA

19

MST Based Approaches

Graph-based representation
– Nodes corresponding to pixels, edge weights are

intensity difference between connected pixels
Compute minimum spanning tree (MST)
– Cheapest way to connect all pixels into single

component or “region”
Selection criterion
– Remove certain MST edges to form components

• Fixed threshold
• Threshold based on neighborhood

− How to find neighborhood

20

Measure Whole Components

Consider properties of two components
being merged when adding an edge
[Felzenszwalb 04]
– Rather than MST based on local edge weights

Recall Kruskal’s MST algorithm adds edges
from lowest to highest weight
– Only when connect distinct components

Apply criterion based on components to
further filter added edges
– Form of criterion limited by considering edges

weight ordered

21

Measuring Component Difference

Let internal difference of a component be
maximum edge weight in its MST

Int(C) = max e∈MST(C,E) w(e)
– Smallest weight such that all pixels of C are

connected by edges of at most that weight

Let difference between two components be
minimum edge weight connecting them

Dif(C1,C2) = min vi∈C1, vj∈C2
w((vi,vj))

– Note: infinite if there is no such edge

22

Region Comparison Function

Two components judged to be distinct when
Dif(C1,C2) large relative to Int(C1) or Int(C2)
– Require that it be sufficiently larger

– Controlled by (non-negative) threshold function τ

Region comparison function g(C1,C2) is true
when regions should be distinct, i.e., when

Dif(C1,C2) > MInt(C1,C2)
where MInt(C1,C2)

= min(Int(C1)+τ(C1), Int(C2)+τ(C2))

23

About the Threshold Function τ

Intuitively Int(C) estimates local differences
over component
– Small components give underestimate of local

difference – neighboring pixels tend to be similar
• Thus τ should be large in this case

Use a function inversely proportional to
component size τ(C) = k / |C|
– k is a parameter of the method that captures

“scale of observation”
• Larger k means prefer larger components

– Other functions possible, e.g., based on shape

24

Algorithm

Sort edges of E into (e1, …, en), in order of non-
decreasing edge weight

Initialize S with one component per pixel

For each eq in (e1, …, en) do step 3

If weight of eq small relative to internal
difference of components it connects then
merge components, otherwise do nothing

I.e., if w(eq) ≤ MInt(Ci,Cj), where Ci,Cj∈S
are distinct components connected by eq,
then update S by merging Ci and Cj

0.

1.

2.

3.

25

Regions Found by the Algorithm

Three main regions plus a few small ones
Why the algorithm stops growing these
– Weight of edges between A and B large wrt max

weight MST edges of A and of B
– Weight of edges between B and C large wrt max

weight MST edge of B (but not of C)

B CA

26

Criteria for a Good Segmentation

Some predicate for comparing two regions
– Intuitively, evaluates whether there is evidence for

a boundary between two regions

A segmentation is too fine when predicate
says no evidence for a boundary
– Some pair of neighboring regions where predicate

false

A segmentation is too coarse when there is
some refinement that is not too fine
– A refinement is obtained by splitting one or more

regions of a segmentation

27

Good Segmentations and the
Example

B CA

Splitting A, B or C
would be too fine

Not splitting A from B
or B from C would be
too coarse

28

Other Algorithms and the Criteria

Piecewise constant regions (or compact
clusters in a color-based feature space)
– Too fine: arbitrarily split ramp in A into pieces
Breaking high cost edges in the MST of a
graph corresponding to the image
– Both: merge A with B or split C into multiple

pieces

B CA

29

Properties of the Algorithm

It is fast, O(n log n) for sorting in step 0 and
O(nα(n)) for the remaining steps
– Using union-find with path compression to

represent the partition, S

It produces good segmentations
– Neither too coarse nor too fine according to the

above definitions
• Despite being a greedy algorithm

It yields the same results regardless of the
order that equal-weight edges are considered
– Proof a bit involved, won’t discuss here

30

Components “Freeze”

When two components do not merge, one will
be a component of the final segmentation
– A merge decision is made for an edge eq and the

two components that it connects Ci, Cj

– Say the merge does not occur because w(eq) >
Int(Ci)+τ(Ci)
• Then any subsequent merge involving Ci will also

not occur, because edges are considered in non-
decreasing weight order

– Analogous for Cj, so when a merge fails one or
both of the components involved “freeze”

31

Segmentation Not Too Fine

Follows readily from fact that components
“freeze”
– An edge between two components in final

segmentation implies the algorithm decided not to
merge when considering this edge
• Component that caused this decision is frozen, so

appears in the final segmentation

Thus the decision that was true when the
edge was considered remains true for the
final segmentation

32

Segmentation Not Too Coarse

Means any proper refinement is too fine
Suppose was a proper refinement, T, of the
final segmentation, S, that is not too fine
– Consider the minimum weight edge, e, that is

between two components A,B of T but is within a
single component C of S

C
A Be

33

Sketch Continued

All edges in MST of either A or B have
weights smaller than w(e), say it is A
– Definition of not too fine, and predicate

Thus algorithm creates A before
considering e
– Because all edges on boundary of A, but internal

to C, have weight larger than w(e)

Since T not too fine, the decision criterion
implies the algorithm would freeze A when
considering e

C
A B

e

34

Closely Related Problems Hard

What appears to be a slight change
– Make Dif be quantile instead of min

k-th vi∈C1, vj∈C2
w((vi,vj))

– Desirable for addressing “cheap path” problem
of merging based on one low cost edge

Makes problem NP hard
– Reduction from min ratio cut

• Ratio of “capacity” to “demand” between nodes

Other methods that we will see are also
NP hard and approximated in various ways

35

Some Implementation Issues

Smooth images slightly before processing
– Remove high variation due to digitization artifacts

Sorting is dominant time in processing
– For known edge distribution can in principle do

better by binning

Treat color images as three separate images
– Components of segmentation are “intersection” of

components from each of the three color planes
• Motivation: significant change in any color

channel should result in a region boundary

36

Some Example Segmentations

k=200
323 components
larger than 10

k=300
320 components
larger than 10

37

Some Shortcomings

Smoothing can introduce problems
– “Extra regions” at boundaries
– Creates “ramps” between regions, thus merge

38

Simple Object Examples

39

Monochrome Example

Components locally connected (grid graph)
– Sometimes not desirable

40

Clustering: Non-Local Components

Points in d-dimensional space
– Vertex for each point, edge weights based on

distance in this space

Intuitively, Int measures “density” of clusters
– Smallest dilation radius such that all points in the

cluster are connected
– When clusters separated by nearly same distance

as their “densities” then segmentation is too fine

For efficiency use a graph with O(|V|) edges
– Use Mount’s approximate nearest neighbor

algorithm to find nearest neighbors

41

Clustering Gaussian Point Data

3 largest clusters, 75% classified 5 largest clusters, 95% classified

Note: Gaussian not
constant density

Graph connecting
four nearest
neighbors to each
vertex

k = 1

42

Clustering for Image
Segmentation

Treat each pixel as a point in a feature space
– More than just local intensity or color, incorporate

spatial, texture, motion or other differences

Now regions of segmentation need not be
connected in image
Practical issue, relatively expensive to find
nearest neighbors for graph
– Can use neighbors in some fixed distance, but

restricts regions that can be found
– In examples here use 4 nearest neighbors

43

Example Clustering of Image Data

Segmentation using difference in R,G,B
values and in position
– Distance of 5 pixels same as 1 intensity unit

Non-Local
Component

44

About Clustering for Image Data

Meaningful regions in image are not
necessarily compact in feature space
Cheap path in feature space not always
apparent in image

45

Additional Example

High variability in illuminated tower pixels

46

Beyond Grid Graphs

Image segmentation methods using
affinity (or cost) matrices
– For each pair of vertices vi,vj an associated

weight wij

• Affinity if larger when vertices more related
• Cost if larger when vertices less related

– Matrix W=[wij] of affinities or costs
• W is large, avoid constructing explicitly
• For images affinities tend to be near zero except

for pixels that are nearby
− E.g., decrease exponentially with distance

• W is sparse

