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Perceptual Organization

Grouping
– Structural relationships between “tokens”

• Parallelism, symmetry, alignment
• Similarity of token properties
• Often strong psychophysical cues

Segmentation
– Clustering pixels into regions

• Generally contiguous in image, not always

– Over-segmentation has proven useful, 
commonly termed super-pixels
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What’s This Image?
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Beyond “Figure/Ground”

Gestalt movement, properties and 
relations that form “percept as a whole”
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Important Structural Relations
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Occluding Contours and Percept
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Importance of Context to Percept

Famous Muller-Lyer Illusion
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Grouping: Illusory Contours
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Figure/Ground Separation

Find foreground by subtracting out 
previously obtained background image
In practice background usually not 
stationary, so simple subtraction not good
Model background
– For fixed camera, Gaussian intensity model for 

each pixel has proven effective 
[Stauffer&Grimson]
• Test fit of observed pixel value to distribution
• Update background distribution at some slow 

rate, for inliers
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Non-Stationary Pixels

Trees, bushes, water, flags, …
Changes in lighting over time
E.g., bimodal distribution of intensity at a 
given “water” pixel over a few minutes
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Background Modeling

Binary image of outlier pixels from 
Gaussian background models
– Small differences reliable enough to often 

correspond to actual objects
• E.g., pedestrians in this scene
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Simple Tracker

Determination of foreground/background 
in this manner yields data good for simple 
tracking
– E.g., Kalman filter for each object estimating 

position and velocity vector
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Segmenting Single Images

Find regions of image that are “coherent”
“Dual” of edge detection
– Regions vs. boundaries

Related to clustering problems
– Early work in image processing and clustering

Many approaches
– Graph-based

• Cuts, spanning trees, MRF methods

– Feature space clustering
– Mean shift
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Coherent regions independent of 
particular objects or recognition

This image has three 
perceptually distinct regions

Where are largest intensity
differences?

Motivating Example
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Graph Based Formulations

G=(V,E) with vertices corresponding to pixels 
and edges connecting neighboring pixels

Weight of edge is measure of difference (or 
affinity) between connected pixels
A segmentation, S, is a partition of V such 
that each C∈S is connected

4-connected or 8-conneted
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Forms of Affinity Measure

Intensity

Distance

Texture
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Important Characteristics

Efficiency
– Run in time essentially linear in the number of 

image pixels 
• With low constant factors
• E.g., compared to edge detection

Understandable output 
– Way to describe what algorithm does

• E.g., Canny edge operator and step edge plus noise

Not purely local
– Perceptually important
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Motivating Example

Purely local criteria are 
inadequate 
– Difference along border between 

A and B is less than differences 
within C

Criteria based on piecewise 
constant regions are 
inadequate (e.g., Potts MRF)
– Will arbitrarily split A into 

subparts

B CA
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MST Based Approaches

Graph-based representation
– Nodes corresponding to pixels, edge weights are 

intensity difference between connected pixels
Compute minimum spanning tree (MST)
– Cheapest way to connect all pixels into single 

component or “region”
Selection criterion
– Remove certain MST edges to form components

• Fixed threshold
• Threshold based on neighborhood

− How to find neighborhood
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Measure Whole Components

Consider properties of two components 
being merged when adding an edge 
[Felzenszwalb 04]
– Rather than MST based on local edge weights 

Recall Kruskal’s MST algorithm adds edges 
from lowest to highest weight
– Only when connect distinct components

Apply criterion based on components to 
further filter added edges
– Form of criterion limited by considering edges 

weight ordered
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Measuring Component Difference

Let internal difference of a component be 
maximum edge weight in its MST

Int(C) = max e∈MST(C,E) w(e)
– Smallest weight such that all pixels of C are 

connected by edges of at most that weight  

Let difference between two components be 
minimum edge weight connecting them

Dif(C1,C2) = min vi∈C1, vj∈C2
w((vi,vj))

– Note: infinite if there is no such edge
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Region Comparison Function

Two components judged to be distinct when 
Dif(C1,C2) large relative to Int(C1) or Int(C2)
– Require that it be sufficiently larger

– Controlled by (non-negative) threshold function τ

Region comparison function g(C1,C2) is true 
when regions should be distinct, i.e., when

Dif(C1,C2) > MInt(C1,C2)
where MInt(C1,C2) 

=  min(Int(C1)+τ(C1), Int(C2)+τ(C2))
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About the Threshold Function τ

Intuitively Int(C) estimates local differences 
over component
– Small components give underestimate of local 

difference – neighboring pixels tend to be similar
• Thus τ should be large in this case

Use a function inversely proportional to 
component size τ(C) = k / |C|
– k is a parameter of the method that captures 

“scale of observation”
• Larger k means prefer larger components

– Other functions possible, e.g., based on shape
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Algorithm

Sort edges of E into (e1, …, en), in order of non-
decreasing edge weight

Initialize S with one component per pixel

For each eq in (e1, …, en) do step 3

If weight of eq small relative to internal 
difference of components it connects then 
merge components, otherwise do nothing

I.e., if w(eq) ≤ MInt(Ci,Cj), where Ci,Cj∈S
are distinct components connected by eq, 
then update S by merging Ci and Cj

0.

1.

2.

3.
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Regions Found by the Algorithm

Three main regions plus a few small ones
Why the algorithm stops growing these 
– Weight of edges between A and B large wrt max 

weight MST edges of A and of B
– Weight of edges between B and C large wrt max 

weight MST edge of B (but not of C)

B CA
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Criteria for a Good Segmentation

Some predicate for comparing two regions
– Intuitively, evaluates whether there is evidence for 

a boundary between two regions

A segmentation is too fine when predicate 
says no evidence for a boundary
– Some pair of neighboring regions where predicate 

false

A segmentation is too coarse when there is 
some refinement that is not too fine
– A refinement is obtained by splitting one or more 

regions of a segmentation
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Good Segmentations and the 
Example

B CA

Splitting A, B or C 
would be too fine

Not splitting A from B 
or B from C would be 
too coarse
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Other Algorithms and the Criteria

Piecewise constant regions (or compact 
clusters in a color-based feature space)
– Too fine: arbitrarily split ramp in A into pieces
Breaking high cost edges in the MST of a 
graph corresponding to the image
– Both: merge A with B or split C into multiple 

pieces 

B CA
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Properties of the Algorithm

It is fast, O(n log n) for sorting in step 0 and 
O(nα(n)) for the remaining steps
– Using union-find with path compression to 

represent the partition, S

It produces good segmentations
– Neither too coarse nor too fine according to the 

above definitions 
• Despite being a greedy algorithm

It yields the same results regardless of the 
order that equal-weight edges are considered
– Proof a bit involved, won’t discuss here
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Components “Freeze”

When two components do not merge, one will 
be a component of the final segmentation
– A merge decision is made for an edge eq and the 

two components that it connects Ci, Cj

– Say the merge does not occur because w(eq) > 
Int(Ci)+τ(Ci)
• Then any subsequent merge involving Ci will also 

not occur, because edges are considered in non-
decreasing weight order

– Analogous for Cj, so when a merge fails one or 
both of the components involved “freeze”
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Segmentation Not Too Fine

Follows readily from fact that components 
“freeze”
– An edge between two components in final 

segmentation implies the algorithm decided not to 
merge when considering this edge
• Component that caused this decision is frozen, so 

appears in the final segmentation

Thus the decision that was true when the 
edge was considered remains true for the 
final segmentation
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Segmentation Not Too Coarse

Means any proper refinement is too fine
Suppose was a proper refinement, T, of the 
final segmentation, S, that is not too fine
– Consider the minimum weight edge, e, that is 

between two components A,B of T but is within a 
single component C of S

C
A Be
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Sketch Continued

All edges in MST of either A or B have 
weights smaller than w(e), say it is A
– Definition of not too fine, and predicate

Thus algorithm creates A before 
considering e
– Because all edges on boundary of A, but internal 

to C, have weight larger than w(e)

Since T not too fine, the decision criterion 
implies the algorithm would freeze A when 
considering e

C
A B

e
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Closely Related Problems Hard

What appears to be a slight change
– Make Dif be quantile instead of min 

k-th vi∈C1, vj∈C2
w((vi,vj))

– Desirable for addressing “cheap path” problem 
of merging based on one low cost edge

Makes problem NP hard
– Reduction from min ratio cut

• Ratio of “capacity” to “demand” between nodes

Other methods that we will see are also 
NP hard and approximated in various ways
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Some Implementation Issues

Smooth images slightly before processing
– Remove high variation due to digitization artifacts

Sorting is dominant time in processing
– For known edge distribution can in principle do 

better by binning

Treat color images as three separate images
– Components of segmentation are “intersection” of 

components from each of the three color planes
• Motivation: significant change in any color 

channel should result in a region boundary



36

Some Example Segmentations

k=200
323 components
larger than 10

k=300
320 components
larger than 10
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Some Shortcomings

Smoothing can introduce problems
– “Extra regions” at boundaries
– Creates “ramps” between regions, thus merge
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Simple Object Examples
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Monochrome Example

Components locally connected (grid graph)
– Sometimes not desirable
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Clustering: Non-Local Components

Points in d-dimensional space
– Vertex for each point, edge weights based on 

distance in this space

Intuitively, Int measures “density” of clusters
– Smallest dilation radius such that all points in the 

cluster are connected
– When clusters separated by nearly same distance 

as their “densities” then segmentation is too fine

For efficiency use a graph with O(|V|) edges
– Use Mount’s approximate nearest neighbor 

algorithm to find nearest neighbors
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Clustering Gaussian Point Data

3 largest clusters, 75% classified 5 largest clusters, 95% classified

Note: Gaussian not 
constant density

Graph connecting 
four nearest 
neighbors to each 
vertex

k = 1
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Clustering for Image 
Segmentation

Treat each pixel as a point in a feature space
– More than just local intensity or color, incorporate 

spatial, texture, motion or other differences

Now regions of segmentation need not be 
connected in image
Practical issue, relatively expensive to find 
nearest neighbors for graph
– Can use neighbors in some fixed distance, but 

restricts regions that can be found
– In examples here use 4 nearest neighbors
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Example Clustering of Image Data

Segmentation using difference in R,G,B 
values and in position
– Distance of 5 pixels same as 1 intensity unit 

Non-Local 
Component
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About Clustering for Image Data

Meaningful regions in image are not 
necessarily compact in feature space 
Cheap path in feature space not always 
apparent in image
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Additional Example

High variability in illuminated tower pixels
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Beyond Grid Graphs

Image segmentation methods using 
affinity (or cost) matrices
– For each pair of vertices vi,vj an associated 

weight wij

• Affinity if larger when vertices more related
• Cost if larger when vertices less related

– Matrix W=[ wij ] of affinities or costs
• W is large, avoid constructing explicitly
• For images affinities tend to be near zero except 

for pixels that are nearby
− E.g., decrease exponentially with distance

• W is sparse


