

CS 664 Segmentation

Daniel Huttenlocher

Perceptual Organization

Grouping

- Structural relationships between "tokens"
 - Parallelism, symmetry, alignment
 - Similarity of token properties
 - Often strong psychophysical cues

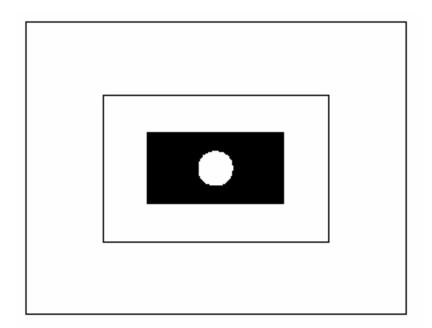
Segmentation

- Clustering pixels into regions
 - Generally contiguous in image, not always
- Over-segmentation has proven useful, commonly termed super-pixels

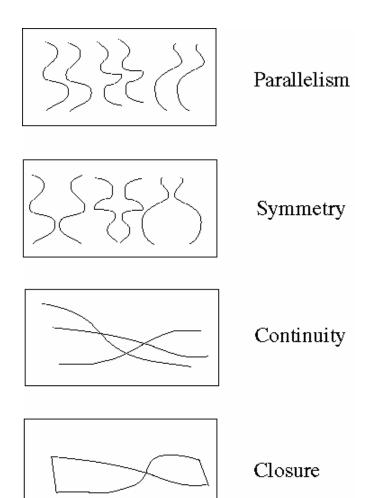
What's This Image?

Beyond "Figure/Ground"

 Gestalt movement, properties and relations that form "percept as a whole"



Important Structural Relations



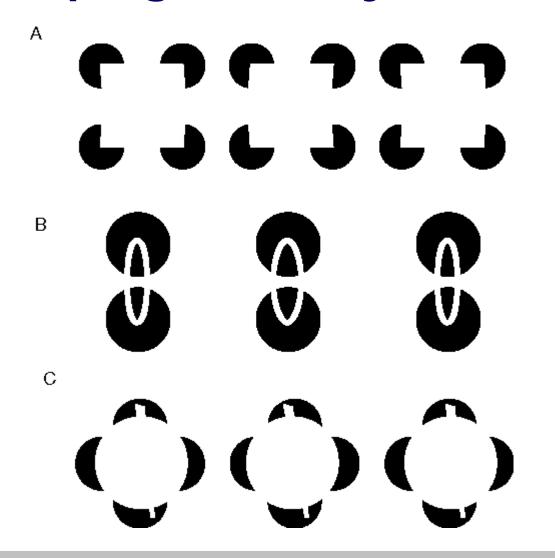
Occluding Contours and Percept

Importance of Context to Percept

Famous Muller-Lyer Illusion



Grouping: Illusory Contours

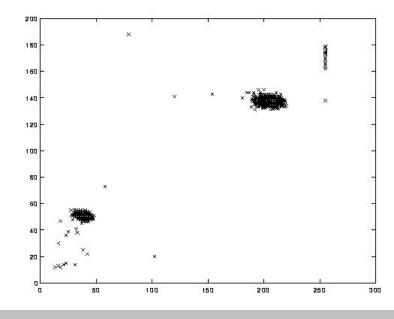


Figure/Ground Separation

- Find foreground by subtracting out previously obtained background image
- In practice background usually not stationary, so simple subtraction not good
- Model background
 - For fixed camera, Gaussian intensity model for each pixel has proven effective [Stauffer&Grimson]
 - Test fit of observed pixel value to distribution
 - Update background distribution at some slow rate, for inliers

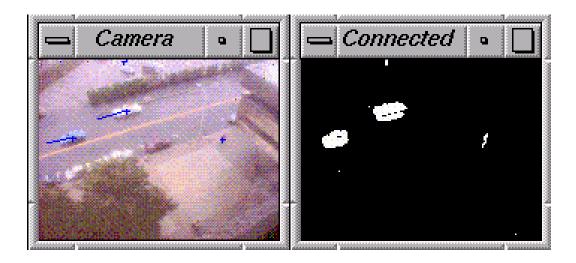
Non-Stationary Pixels

- Trees, bushes, water, flags, ...
- Changes in lighting over time
- E.g., bimodal distribution of intensity at a given "water" pixel over a few minutes



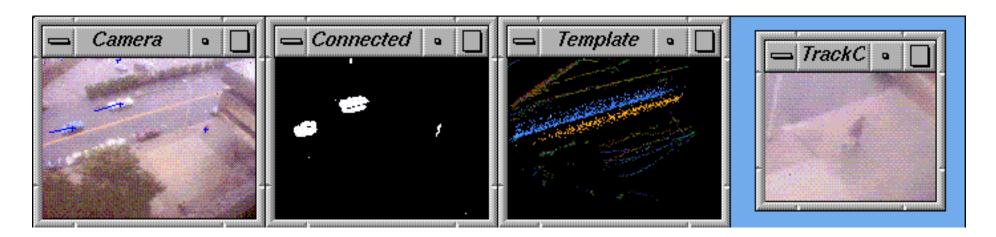
Background Modeling

- Binary image of outlier pixels from Gaussian background models
 - Small differences reliable enough to often correspond to actual objects
 - E.g., pedestrians in this scene



Simple Tracker

- Determination of foreground/background in this manner yields data good for simple tracking
 - E.g., Kalman filter for each object estimating position and velocity vector

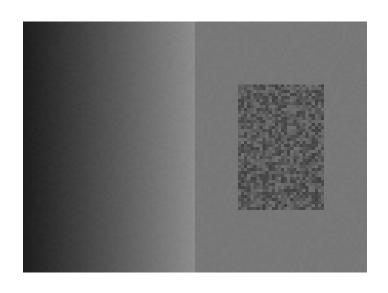


Segmenting Single Images

- Find regions of image that are "coherent"
- "Dual" of edge detection
 - Regions vs. boundaries
- Related to clustering problems
 - Early work in image processing and clustering
- Many approaches
 - Graph-based
 - Cuts, spanning trees, MRF methods
 - Feature space clustering
 - Mean shift

Motivating Example

 Coherent regions independent of particular objects or recognition

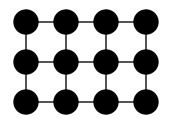


This image has three perceptually distinct regions

Where are largest intensity differences?

Graph Based Formulations

• G=(V,E) with vertices corresponding to pixels and edges connecting neighboring pixels



4-connected or 8-conneted

- Weight of edge is measure of difference (or affinity) between connected pixels
- A segmentation, S, is a partition of V such that each $C \in S$ is connected

Forms of Affinity Measure

Intensity

$$aff(x,y) = \exp\left\{-\left(\frac{1}{2\sigma_i^2}\right)\left(\left\|I(x) - I(y)\right\|^2\right)\right\}$$

Distance

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_d^2}\right)(\|x - y\|^2)\right\}$$

Texture

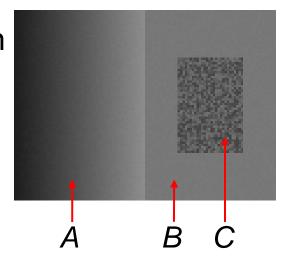
$$aff(x,y) = \exp\left\{-\left(\frac{1}{2\sigma_t^2}\right)\left(\left\|c(x) - c(y)\right\|^2\right)\right\}$$

Important Characteristics

- Efficiency
 - Run in time essentially linear in the number of image pixels
 - With low constant factors
 - E.g., compared to edge detection
- Understandable output
 - Way to describe what algorithm does
 - E.g., Canny edge operator and step edge plus noise
- Not purely local
 - Perceptually important

Motivating Example

- Purely local criteria are inadequate
 - Difference along border between
 A and B is less than differences
 within C
- Criteria based on piecewise constant regions are inadequate (e.g., Potts MRF)
 - Will arbitrarily split A into subparts



MST Based Approaches

- Graph-based representation
 - Nodes corresponding to pixels, edge weights are intensity <u>difference</u> between connected pixels
- Compute minimum spanning tree (MST)
 - Cheapest way to connect all pixels into single component or "region"
- Selection criterion
 - Remove certain MST edges to form components
 - Fixed threshold
 - Threshold based on neighborhood
 - How to find neighborhood

Measure Whole Components

- Consider properties of two components being merged when adding an edge [Felzenszwalb 04]
 - Rather than MST based on local edge weights
- Recall Kruskal's MST algorithm adds edges from lowest to highest weight
 - Only when connect distinct components
- Apply criterion based on components to further filter added edges
 - Form of criterion limited by considering edges weight ordered

Measuring Component Difference

 Let internal difference of a component be maximum edge weight in its MST

$$Int(C) = \max_{e \in MST(C,E)} w(e)$$

- Smallest weight such that all pixels of C are connected by edges of at most that weight
- Let difference between two components be minimum edge weight connecting them

$$Dif(C_{1,}C_{2}) = \min_{v_{i} \in C_{1}, v_{j} \in C_{2}} w((v_{i,}v_{j}))$$

- Note: infinite if there is no such edge

Region Comparison Function

- Two components judged to be distinct when $Dif(C_1, C_2)$ large relative to $Int(C_1)$ or $Int(C_2)$
 - Require that it be sufficiently larger
 - Controlled by (non-negative) threshold function τ
- Region comparison function $g(C_{1,}C_{2})$ is true when regions should be distinct, i.e., when

$$Dif(C_{1,}C_{2}) > MInt(C_{1,}C_{2})$$
 where $MInt(C_{1,}C_{2})$

$$= min(Int(C_{1}) + \tau(C_{1}), Int(C_{2}) + \tau(C_{2}))$$

About the Threshold Function au

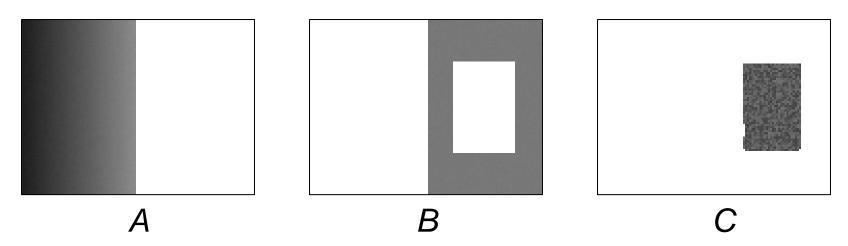
- Intuitively Int(C) estimates local differences over component
 - Small components give underestimate of local difference – neighboring pixels tend to be similar
 - Thus τ should be large in this case
- Use a function inversely proportional to component size $\tau(C) = k / |C|$
 - k is a parameter of the method that captures "scale of observation"
 - Larger k means prefer larger components
 - Other functions possible, e.g., based on shape

Algorithm

- 0. Sort edges of E into $(e_1, ..., e_n)$, in order of non-decreasing edge weight
- 1. Initialize S with one component per pixel
- 2. For each e_q in $(e_1, ..., e_n)$ do step 3
- 3. If weight of e_q small relative to internal difference of components it connects then merge components, otherwise do nothing

I.e., if $w(e_q) \leq MInt(C_i, C_j)$, where $C_i, C_j \in S$ are distinct components connected by e_q , then update S by merging C_i and C_i

Regions Found by the Algorithm



- Three main regions plus a few small ones
- Why the algorithm stops growing these
 - Weight of edges between A and B large wrt max weight MST edges of A and of B
 - Weight of edges between B and C large wrt max weight MST edge of B (but not of C)

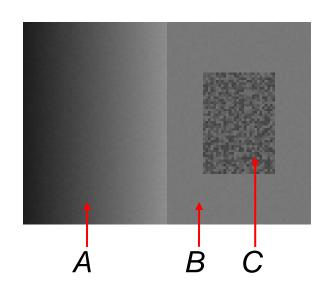
Criteria for a Good Segmentation

- Some predicate for comparing two regions
 - Intuitively, evaluates whether there is evidence for a boundary between two regions
- A segmentation is too fine when predicate says no evidence for a boundary
 - Some pair of neighboring regions where predicate false
- A segmentation is too coarse when there is some refinement that is not too fine
 - A refinement is obtained by splitting one or more regions of a segmentation

Good Segmentations and the Example

 Splitting A, B or C would be too fine

 Not splitting A from B or B from C would be too coarse

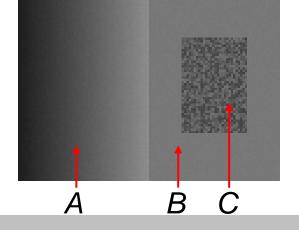


Other Algorithms and the Criteria

- Piecewise constant regions (or compact clusters in a color-based feature space)
 - Too fine: arbitrarily split ramp in A into pieces
- Breaking high cost edges in the MST of a graph corresponding to the image

Both: merge A with B or split C into multiple

pieces



Properties of the Algorithm

- It is fast, $O(n \log n)$ for sorting in step 0 and $O(n\alpha(n))$ for the remaining steps
 - Using union-find with path compression to represent the partition, S
- It produces good segmentations
 - Neither too coarse nor too fine according to the above definitions
 - Despite being a greedy algorithm
- It yields the same results regardless of the order that equal-weight edges are considered
 - Proof a bit involved, won't discuss here

Components "Freeze"

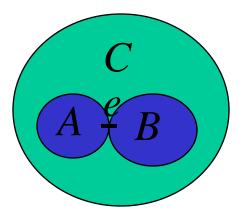
- When two components do not merge, one will be a component of the final segmentation
 - A merge decision is made for an edge e_q and the two components that it connects $C_{i'}$, C_{j}
 - Say the merge does not occur because $w(e_q) > Int(C_i) + \tau(C_i)$
 - Then any subsequent merge involving C_i will also not occur, because edges are considered in non-decreasing weight order
 - Analogous for C_j , so when a merge fails one or both of the components involved "freeze"

Segmentation Not Too Fine

- Follows readily from fact that components "freeze"
 - An edge between two components in final segmentation implies the algorithm decided not to merge when considering this edge
 - Component that caused this decision is frozen, so appears in the final segmentation
- Thus the decision that was true when the edge was considered remains true for the final segmentation

Segmentation Not Too Coarse

- Means any proper refinement is too fine
- Suppose was a proper refinement, T, of the final segmentation, S, that is not too fine
 - Consider the minimum weight edge, e, that is between two components A,B of T but is within a single component C of S



Sketch Continued

- All edges in MST of either A or B have weights smaller than w(e), say it is A
 - Definition of not too fine, and predicate
- Thus algorithm creates A before considering e
 - Because all edges on boundary of A, but internal to C, have weight larger than w(e)
- Since T not too fine, the decision criterion implies the algorithm would freeze A when considering e

Closely Related Problems Hard

- What appears to be a slight change
 - Make Dif be quantile instead of min

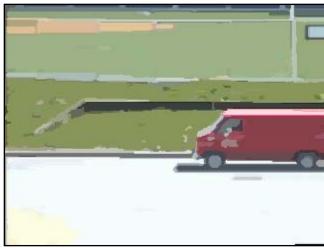
k-th
$$v_i \in C_1, v_j \in C_2$$
 $w((v_i, v_j))$

- Desirable for addressing "cheap path" problem of merging based on one low cost edge
- Makes problem NP hard
 - Reduction from min ratio cut
 - Ratio of "capacity" to "demand" between nodes
- Other methods that we will see are also
 NP hard and approximated in various ways

Some Implementation Issues

- Smooth images slightly before processing
 - Remove high variation due to digitization artifacts
- Sorting is dominant time in processing
 - For known edge distribution can in principle do better by binning
- Treat color images as three separate images
 - Components of segmentation are "intersection" of components from each of the three color planes
 - Motivation: significant change in any color channel should result in a region boundary

Some Example Segmentations



k=300 320 components larger than 10

k=200 323 components larger than 10

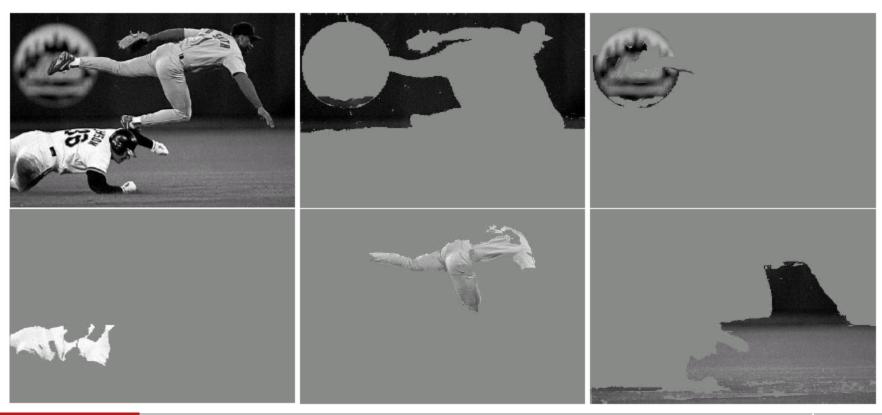
Some Shortcomings

- Smoothing can introduce problems
 - "Extra regions" at boundaries
 - Creates "ramps" between regions, thus merge

Simple Object Examples

Monochrome Example

- Components locally connected (grid graph)
 - Sometimes not desirable



Clustering: Non-Local Components

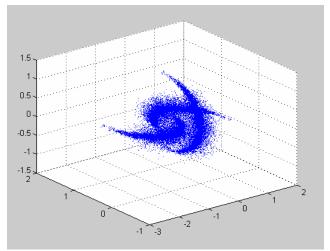
Points in d-dimensional space

Cornell University

- Vertex for each point, edge weights based on distance in this space
- Intuitively, Int measures "density" of clusters
 - Smallest dilation radius such that all points in the cluster are connected
 - When clusters separated by nearly same distance as their "densities" then segmentation is too fine
- For efficiency use a graph with O(|V|) edges
 - Use Mount's approximate nearest neighbor algorithm to find nearest neighbors

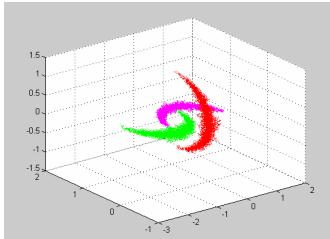
Clustering Gaussian Point Data

Note: Gaussian not constant density

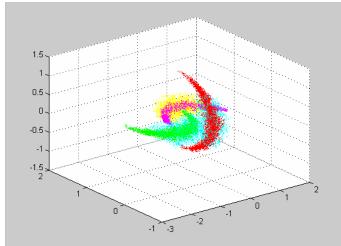


Graph connecting four nearest neighbors to each vertex

$$k = 1$$



3 largest clusters, 75% classified



5 largest clusters, 95% classified

Clustering for Image Segmentation

- Treat each pixel as a point in a feature space
 - More than just local intensity or color, incorporate spatial, texture, motion or other differences
- Now regions of segmentation need not be connected in image
- Practical issue, relatively expensive to find nearest neighbors for graph
 - Can use neighbors in some fixed distance, but restricts regions that can be found
 - In examples here use 4 nearest neighbors

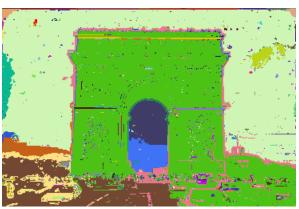
Example Clustering of Image Data

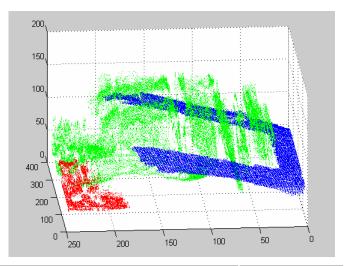
- Segmentation using difference in R,G,B values and in position
 - Distance of 5 pixels same as 1 intensity unit

Non-Local Component

About Clustering for Image Data

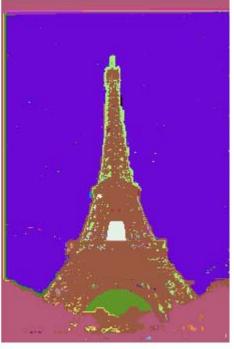
- Meaningful regions in image are not necessarily compact in feature space
- Cheap path in feature space not always apparent in image





Additional Example

High variability in illuminated tower pixels



Beyond Grid Graphs

- Image segmentation methods using affinity (or cost) matrices
 - For each pair of vertices v_i, v_j an associated weight w_{ij}
 - Affinity if larger when vertices more related
 - Cost if larger when vertices less related
 - Matrix W=[w_{ii}] of affinities or costs
 - W is large, avoid constructing explicitly
 - For images affinities tend to be near zero except for pixels that are nearby
 - E.g., decrease exponentially with distance
 - W is sparse

