Recent Progress in Recognizing and Organizing Images

Daniel Huttenlocher John P. and Rilla Neafsey Professor Cornell University

Overview

- State of the art in object recognition
 - Categories rather than specific objects
 - Shared datasets and evaluations
 - Image classification
 - Object localization
- Recent developments in large image collections
 - Image gist and scene-level matching
 - 3D organization of site-specific photos

Object Recognition

- Past decade of research has focused largely on recognizing object categories
 - E.g., car, bus, motorcycle as opposed to earlier work on specific car or specific model of car
- Extensive use and development of machine learning techniques
- Moderate-scale datasets largely derived from Web photo sharing sites
 - E.g., PASCAL VOC: 20 categories, 10K images, 25K instances, hand-labeled ground truth, annual competition

Object Recognition Tasks

- Classification (ready for commercialization*)
 - Binary determination of whether or not an image contains at least one instance of a given category
- Localization (more research needed)
 - Specification of where each instance of a given category is in an image
 - E.g., a bounding box
- Classification easier
 - What is classification without localization and when is that useful?

PASCAL VOC Example Images

PASCAL VOC 2007 Results

- Classification task (yes/no, chance high)
 - Some categories much harder than others

Measuring State of Art

- Precision vs. recall curve, and mean average precision
 - Adopted from TREC text retrieval evaluations
- In contrast with ROC (detection vs. false alarm rate) curve, and area under curve
 - Address problems with highly skewed data
- Precision = TP/(TP+FP)
- Detection rate
 = recall = TP/(TP+FN)

	actual	actual
	positive	negative
predicted positive	TP	FP
predicted negative	FN	TN

False alarm rate = FP/(FP+TN)

Best Categorization: Person

• More research emphasis on category? Predictable scene context? High baseline?

Person Categorization Examples

Top ranked in-class

Bottom ranked in-class

- Top ranked non-class
 - Context?

Ground truth boxes

Best Categorization Methods

- Bag of words type models
 - Adapted from text classification literature
 - Words not well defined in case of images local properties
 - "Visual words"
- Interest operators spatial derivatives
 - Edgels, Laplacian of Gaussian, Harris corners
- Local features describe interest regions
 - SIFT descriptors, textons, color histograms, pairs of adjacent segments

PASCAL VOC 2007 Results

- Localization task (chance essentially zero)
 - Correct location: intersection over union of bounding boxes ≥.5

Best Localization: Car

 Again category with lots of research work, also relatively predictable context

Localization Examples (UofC-TTI)

Best Localization Methods

- Sliding window style classifiers
 - SVM, AdaBoost
 - Flexible spatial template: "star model" of SVM's
- Separate classifiers by viewpoint
- Use of context in classifiers
- Use of segmentation
- Local features similar to those used for classification
 - HoG, SIFT, local histograms of derivatives

HoG Features

- Image partitioned into 8x8 blocks
- In each block compute histogram of gradient orientations
- Can be done at multiple spatial scales

Flexible Spatial Template (UofC-TTI)

- Hierarchical model [Felzenszwalb et al 08]
 - Coarse template with fine-scale part templates connected by springs (deformable)
 - Learned automatically from examples labeled with bounding boxes

Recap of Recognition

- Object category recognition
 - Classification methods to determine presence or absence of a category in an image
 - Localization methods to determine where each instance of a category is in an image
 - Former more mature and work better than latter; can be useful for image sorting/ranking
- Learning techniques
 - Operate on hundreds or thousands of training instances per category

Image Gist Classification

- Automatically group photos together based on scene characteristics (ready for commercialization*)
 - Gist of scene [Oliva & Torralba 01]
 - Low resolution thumbnails (e.g., 32x32)
 - Oriented filters at various spatial scales
 - Simple techniques become useful for large collections
 - 80M images [Torralba et al 07]
- Capture gross and some fine characteristics
 - Indoor, outdoor, urban, suburban, rural, mountain, water, farmland

Scene Gist, 80M Tiny Images

Image and 16 closest by gist (left)

Average images by label plus gist (right)

Gist for Scene Matching: How Good?

- Closest outdoor scenes by gist
 - 2.1M images from online travel photo groups (no labels)

Collection Matching for Filling-In

 Use gist plus color to select closest images from large set (size important) then find best blend [Hays & Efros 07]

Filling-In Algorithm

Top 20 Results for Filling-In

Better than Local Filling-In Methods

Judgments of real vs. fake (20 subjects)

3D Organization of Photos

- Navigating set of uncalibrated photos of a scene [Snavely et al 06]
 - 3D scene structure, image alignment and camera locations
- Microsoft Photosynth (about to be available commercially)
 - Interactive viewer for collections of photos of a single scene
 - Taken with different cameras, at different times, in unknown locations
 - http://labs.live.com/photosynth/

Photosynth: 3D Structure

Photosynth: Camera Locations

Photosynth: Photo Organization

Photosynth Video

Detect Local Features

SIFT feature detection

Find Correspondences

 Form graph from all pairs using RANSAC to estimate fundamental matrix (camera transform)

3D Point Cloud: Structure From Motion

Summary

- Substantial recent advances in object category recognition – classification of images as containing given category
 - Small number of categories (tens)
- New techniques for organizing large collections of photos based on coarse 2D or 3D properties
 - Useful in applications such as filling-in missing data in images
 - Organizing photos of a given scene