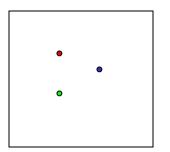


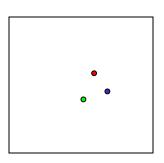
CS 664 Structure and Motion

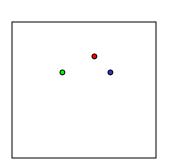
Daniel Huttenlocher

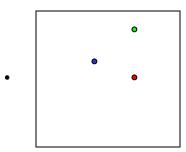
Determining 3D Structure

- Consider set of 3D points X_j seen by set of cameras with projection matrices P_i
- Given only image coordinates x_{ij} of each point in each image, determine 3D coordinates X_i and camera matrices P_i
- Known correspondence between points and known form of projection matrix







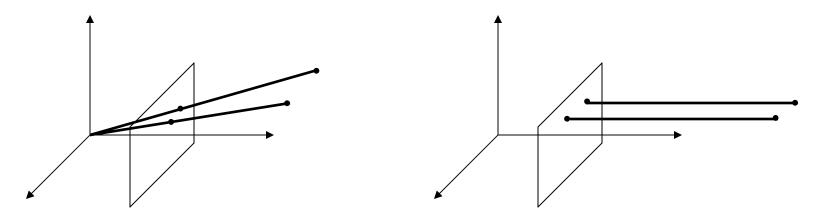


Structure From Motion

- Recover 3D coordinates and (relative) camera locations
- Issues
 - Point correspondences and visibility of points
 - Projection model
 - Calibrated vs. un-calibrated cameras
 - Non-rigid motions, multiple motions
 - Numerical stability of methods

Projection Model

- Parallel (orthographic) Point X=(U,V,W) in space projects to x=(u,v) in image plane
 - Contrast with (fX/W,fY/W) in pinhole model
 - Light rays all parallel rather than through principal point
 - Similar when points at same depth, narrow FOV



Recovering 3D Structure

- With enough corresponding points and views can in principle determine 3D info
 - Redundant data
 - Each view changes only viewing parameters and not point locations
 - 3n unknowns for n points and d(k-1) unknowns for k views and d dof in transformation from one view to next
 - 2nk observed values
 - Overconstrained when 2nk ≥ 3n+d(k-1)
 - Optimization methods, for linear formulations generally least squares error minimization

Minimum Number of Measurements

- In principle can use small number of points and views
 - For instance, 5 points in two images for R,t
 - 5 dof + 3n point locations $\leq 4n$ point measurements when $n \geq 5$
- In 1980's many variants investigated
 - Different projection models
 - Correspondences of lines, points
 - Some nice geometric problems, but studied in absence of noise sensitivity/stability analysis

Sensitive to Measurement Noise

- Solutions based on a small number of points are not stable
 - Errors of the magnitude found in most images yield substantial differences in recovered 3D values
- Method that works in practice called factorization [Tomasi-Kanade 92]
 - Works on sequence of several frames
 - With correspondences of points
 - Consider case of factorization for orthographic projection, no outliers, can be extended

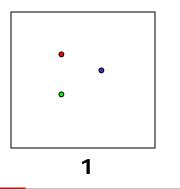
Input: Sequence of Tracked Points

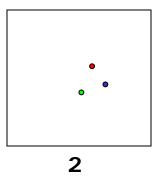
Point coordinates

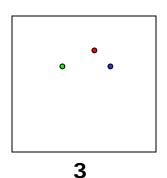
$$W'_{ij} = (U'_{ij}, V'_{ij})$$

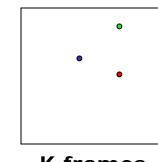
- Where i denotes frame (camera) index and j denotes point index
- Points tracked over frames
 - E.g., use corner trackers discussed previously

n points in each frame









K frames

Centroid Normalized Coordinates

• From observed coordinates $w'_{ij} = (u'_{ij}, v'_{ij})$ $w_{fp} = (u'_{ij} - u_{ij}, v'_{ij} - v_{ij})$

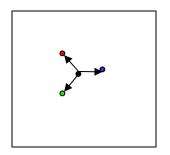
Where

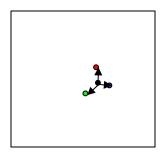
$$\overline{\mathbf{u}}_{ij} = (1/n) \sum_{\mathbf{j}} \mathbf{u'}_{ij}$$

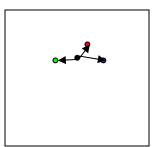
and

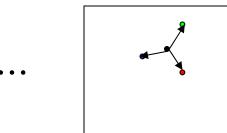
$$\overline{v}_{ij} = (1/n) \sum_{j} v'_{ij}$$

Centroids in frame









Normalization

- Goal of separating out effects of camera translation from those of rotation
- Subtract out centroid to remove translation effects
 - Assume all points belong to object and present at all frames
 - Centroid preserved under projection
- Left to recover 3D coordinates (shape) of n points from k camera orientations

Measurement Matrix

- 2n by k 2 rows per frame, one col per point
- In absence of senor noise this matrix is highly rank deficient
 - Under orthographic projection rank 3 or less

$$W = \begin{bmatrix} u_{11} & \dots & u_{1n} \\ \vdots & & \vdots \\ u_{k1} & \dots & u_{kn} \\ v_{11} & \dots & v_{1n} \\ \vdots & & \vdots \\ v_{k1} & \dots & v_{kn} \end{bmatrix}$$

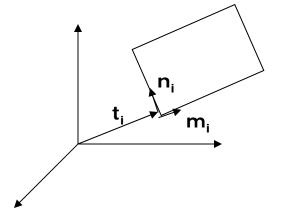
Structure of W

 World point s_j'=(x_j',y_j',z_j') projects to image points

$$u'_{ij} = m_i^T (s_j' - t_i)$$

 $v'_{ij} = n_i^T (s_j' - t_i)$

- Where m_i, n_i are unit vectors defining orientation of image plane in world
- And t_i is vector from world origin to image plane origin



Structure of W (Cont'd)

- Can rewrite in centroid normalized coordinates
 - Since centroid preserved under projection
 - Projection of centroid is centroid of projection

$$u_{ij} = m_i^T s_j$$

 $v_{ij} = n_i^T s_j$

- Where

$$s_j = s_j' - \overline{s}$$

and $\underline{s} = (1/n) \sum_i s_i'$

W Factors Into Simple Product

- W=MS where
 - M is 2kx3 matrix of camera locations
 - S is 3xn matrix of points in world
 - Product is 2kx3 matrix W

S is 3xn matrix of points in world Product is 2kx3 matrix W

• Clearly rank at most 3
$$M = \begin{bmatrix} m_1^T \\ \vdots \\ m_k^T \\ n_1^T \\ \vdots \\ n_k^T \end{bmatrix}$$

$$S = \begin{bmatrix} S_1 & \dots & S_n \end{bmatrix}$$

Factoring W

- Don't know M,S only measurements W
- Given noise or errors in measurements seek least squares approximation
 - Note assuming no outliers (bad data)

$$argmin_{M,S} \|W-MS\|^2$$

- Several methods for solving linear least squares problems
 - Here highly rank deficient, use SVD

Singular Value Decomposition

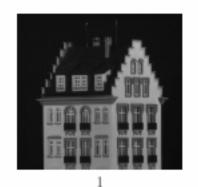
- Seek M,S from the SVD of W=UΣV
 - Where U and V are orthogonal and Σ is diagonal matrix
- Know from structure of problem that rank is at most 3
 - Consider only 3 largest singular values, let Σ' denote matrix with other singular values set to zero
- Then estimate

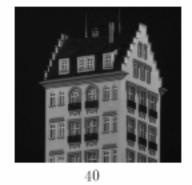
$$M^* = U \sum_{i=1}^{1/2} V_i$$

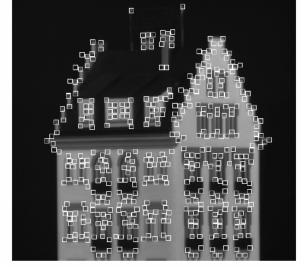
Factorization Not Unique

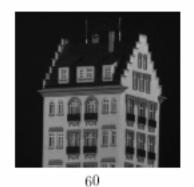
- Any linear transformation of M,S possible
 W=MS=M(LL⁻¹)S=(ML)(L⁻¹S)
- Often referred to as "affine shape"
 - Preserves parallelism/coplanarity
- Still haven't used a constraint on the form of M
 - Describes camera plane orientation at each frame m_i,n_i all unit vectors
 m_in_i = 0

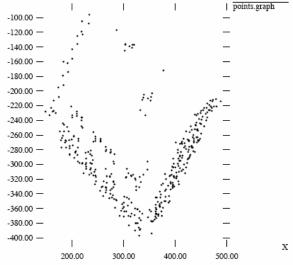
Factorization Results

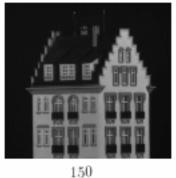












Extensions

- Paraperspective [Poelman & Kanade, PAMI 97]
- Sequential Factorization
 [Morita & Kanade, PAMI 97]
- Factorization under perspective [Christy & Horaud, PAMI 96]
 [Sturm & Triggs, ECCV 96]
- Factorization with Uncertainty [Anandan & Irani, IJCV 2002]

Bundle Adjustment

- More generally don't necessarily have linear least squares form of problem
- Technique from photogrammetry literature dating back many years
- Needs good initialization
- Estimate projection matrices and 3D points which minimize image distance d between re-projected and measured points

$$\min_{P_i^{'},X_j^{'}} \sum_{i,j} d(P_i^{'}X_j^{'},x_{ij})$$

Bundle Adjustment

 Involves adjusting bundle of rays between each camera center and set of 3D points

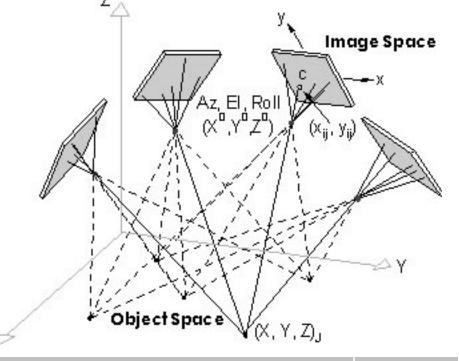
Or equivalently, each 3D point and set of

camera centers

 Maximum likelihood estimate under Gaussian noise model

 X_j's depend on P_i's and vice versa

Solved iteratively



Iterative Minimization

- Local search from initial solution
 - Convergence depends on solution quality
- In full projective case each camera has 11 dof and each point 3 dof
 - Often use 12 parameter homogeneous P matrix, so 3n+12k
- Using Levenberg-Marquardt algorithm
 - Matrices of dimension (3n+12k) x (3n+12k)
 can be slow to factor/invert
- Various approaches

Addressing Computational Issues

- Solve smaller problems and merge...
- Interleave by alternately minimizing error by moving cameras for fixed point locations and vice versa
 - Limits matrices to 12x12 (or number of dof squared)
 - May have different convergence properties
- Sparse matrix methods
- Initial estimate can be obtained using factorization if (nearly) affine

Sparsity

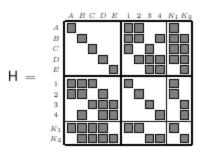
$$\widehat{u}_{ij} = f(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

 $\widehat{v}_{ij} = g(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$

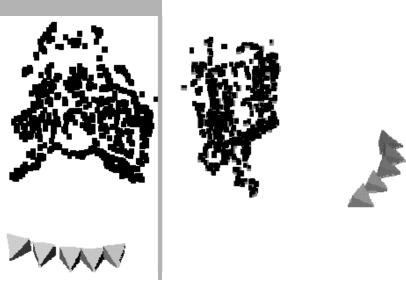
 Only a few entries in Jacobian are nonzero

$$rac{\partial \widehat{u}_{ij}}{\partial \mathbf{K}}, \quad rac{\partial \widehat{u}_{ij}}{\partial \mathbf{R}_{j}}, \quad rac{\partial \widehat{u}_{ij}}{\partial \mathbf{t}_{j}}, \quad rac{\partial \widehat{u}_{ij}}{\partial \mathbf{x}_{i}},$$



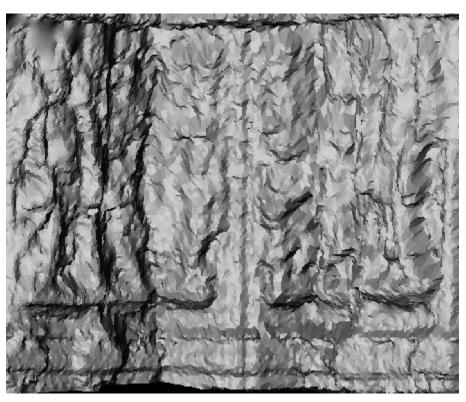


Example 3D Reconstruction



[Pollefeys 98-01]

Example Cont'd



Structure from Motion: Limitations

- Very difficult to reliably estimate <u>metric</u> structure and motion unless:
 - Large (x or y) rotation, or
 - Large field of view and depth variation
- Camera calibration important for Euclidean reconstructions
- Need good feature tracker

