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Determining 3D Structure

Consider set of 3D points Xj seen by set of 
cameras with projection matrices Pi

Given only image coordinates xij of each 
point in each image, determine 3D 
coordinates Xj and camera matrices Pi

Known correspondence between points 
and known form of projection matrix

…
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Structure From Motion

Recover 3D coordinates and (relative) 
camera locations
Issues
– Point correspondences and visibility of points
– Projection model
– Calibrated vs. un-calibrated cameras
– Non-rigid motions, multiple motions
– Numerical stability of methods
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Projection Model

Parallel (orthographic) Point X=(U,V,W) in 
space projects to x=(u,v) in image plane
– Contrast with (fX/W,fY/W) in pinhole model
– Light rays all parallel rather than through 

principal point
• Similar when points at same depth, narrow FOV
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Recovering 3D Structure

With enough corresponding points and 
views can in principle determine 3D info
– Redundant data

• Each view changes only viewing parameters and 
not point locations
− 3n unknowns for n points and d(k-1) unknowns 

for k views and d dof in transformation from one 
view to next

− 2nk observed values

• Overconstrained when 2nk ≥ 3n+d(k-1)
− Optimization methods, for linear formulations 

generally least squares error minimization
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Minimum Number of Measurements

In principle can use small number of 
points and views
– For instance, 5 points in two images for R,t

• 5 dof + 3n point locations ≤ 4n point 
measurements when n ≥ 5

In 1980’s many variants investigated
– Different projection models
– Correspondences of lines, points
– Some nice geometric problems, but studied in 

absence of noise sensitivity/stability analysis
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Sensitive to Measurement Noise

Solutions based on a small number of 
points are not stable
– Errors of the magnitude found in most images 

yield substantial differences in recovered 3D 
values

Method that works in practice called 
factorization [Tomasi-Kanade 92]
– Works on sequence of several frames
– With correspondences of points
– Consider case of factorization for orthographic 

projection, no outliers, can be extended
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Input: Sequence of Tracked Points

Point coordinates
w’ij=(u’ij,v’ij)

– Where i denotes frame (camera) index
and j denotes point index 

– Points tracked over frames
• E.g., use corner trackers discussed previously

…

1 2 3 K frames

n points
in each
frame
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Centroid Normalized Coordinates

From observed coordinates w’ij=(u’ij,v’ij)
wfp=(u’ij - uij, v’ij - vij)

– Where
uij = (1/n) ∑j u’ij

and

vij = (1/n) ∑j v’ij

…

Centroids
in frame
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Normalization

Goal of separating out effects of camera 
translation from those of rotation

Subtract out centroid to remove 
translation effects
– Assume all points belong to object and present 

at all frames

– Centroid preserved under projection

Left to recover 3D coordinates (shape) of 
n points from k camera orientations
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Measurement Matrix

2n by k – 2 rows per frame, one col per 
point
In absence of senor noise this matrix is 
highly rank deficient
– Under orthographic projection rank 3 or less
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Structure of W

World point sj’=(xj’,yj’,zj’) projects to 
image points 

u’ij = mi
T (sj’ – ti)

v’ij = ni
T (sj’ – ti)

– Where mi, ni are unit
vectors defining 
orientation of image 
plane in world

– And ti is vector from 
world origin to 
image plane origin

mi

ni

ti
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Structure of W (Cont’d)

Can rewrite in centroid normalized 
coordinates
– Since centroid preserved under projection
– Projection of centroid is centroid of projection

uij = mi
T sj

vij = ni
T sj

– Where
sj=sj’- s

and
s = (1/n) ∑j s’j
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W Factors Into Simple Product

W=MS where
– M is 2kx3 matrix of camera locations
– S is 3xn matrix of points in world
– Product is 2kx3 matrix W

• Clearly rank at most 3 
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Factoring W

Don’t know M,S only measurements W
Given noise or errors in measurements 
seek least squares approximation
– Note assuming no outliers (bad data)

argminM,S ⎟⎜W-MS⎟⎜2

Several methods for solving linear least 
squares problems
– Here highly rank deficient, use SVD
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Singular Value Decomposition

Seek M,S from the SVD of W=UΣV
– Where U and V are orthogonal and Σ is 

diagonal matrix

Know from structure of problem that 
rank is at most 3
– Consider only 3 largest singular values, let Σ’

denote matrix with other singular values set 
to zero

Then estimate 
M*=U Σ’½

S*= Σ’½V
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Factorization Not Unique

Any linear transformation of M,S possible
W=MS=M(LL-1)S=(ML)(L-1S)

Often referred to as “affine shape”
– Preserves parallelism/coplanarity

Still haven’t used a constraint on the form 
of M
– Describes camera plane

orientation at each frame
mi,ni all unit vectors
mini = 0
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Factorization Results
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Extensions

Paraperspective
[Poelman & Kanade, PAMI 97]
Sequential Factorization
[Morita & Kanade, PAMI 97]
Factorization under perspective
[Christy & Horaud, PAMI 96]
[Sturm & Triggs, ECCV 96]
Factorization with Uncertainty
[Anandan & Irani, IJCV 2002]
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Bundle Adjustment

More generally don’t necessarily have linear 
least squares form of problem
Technique from photogrammetry literature 
dating back many years
Needs good initialization
Estimate projection matrices and 3D points 
which minimize image distance d between 
re-projected and measured points 

),(min ''

,
, '' ijji

ji
XP xXPd

ji
∑
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Bundle Adjustment

Involves adjusting bundle of rays between 
each camera center and set of 3D points
– Or equivalently, each 3D point and set of 

camera centers

Maximum likelihood 
estimate under 
Gaussian noise model
Xj’s depend on Pi’s
and vice versa
– Solved iteratively
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Iterative Minimization

Local search from initial solution
– Convergence depends on solution quality

In full projective case each camera has 11 
dof and each point 3 dof
– Often use 12 parameter homogeneous P 

matrix, so 3n+12k

Using Levenberg-Marquardt algorithm
– Matrices of dimension (3n+12k) x (3n+12k) 

can be slow to factor/invert

Various approaches
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Addressing Computational Issues 

Solve smaller problems and merge…
Interleave by alternately minimizing error 
by moving cameras for fixed point 
locations and vice versa
– Limits matrices to 12x12 (or number of dof

squared)
– May have different convergence properties

Sparse matrix methods
Initial estimate can be obtained using 
factorization if (nearly) affine 
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Sparsity

Only a few entries in Jacobian are non-
zero
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Example 3D Reconstruction

[Pollefeys 98-01]
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Example Cont’d
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Structure from Motion: Limitations

Very difficult to reliably estimate metric
structure and motion unless:
– Large (x or y) rotation, or
– Large field of view and depth variation

Camera calibration important for Euclidean 
reconstructions
Need good feature tracker


