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Determining 3D Structure

= Consider set of 3D points X; seen by set of
cameras with projection matrices P;

= Given only image coordinates Xx;; of each
point in each image, determine 3D
coordinates X; and camera matrices P;

= Known correspondence between points
and known form of projection matrix
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Structure From Motion

= Recover 3D coordinates and (relative)
camera locations

" |ssues
— Point correspondences and visibility of points
— Projection model
— Calibrated vs. un-calibrated cameras
— Non-rigid motions, multiple motions
— Numerical stability of methods
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Projection Model

= Parallel (orthographic) Point X=(U,V,W) In
space projects to x=(u,Vv) In iImage plane
— Contrast with (fX/W,fY/W) in pinhole model

— Light rays all parallel rather than through
principal point
e Similar when points at same depth, narrow FOV

e

/

/
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Recovering 3D Structure

= With enough corresponding points and
views can In principle determine 3D info

— Redundant data
e Each view changes only viewing parameters and
not point locations

— 3n unknowns for n points and d(k-1) unknowns
for k views and d dof in transformation from one
view to next

— 2nk observed values

e Overconstrained when 2nk > 3n+d(k-1)

— Optimization methods, for linear formulations
generally least squares error minimization
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Mintimum Number of Measurements

= In principle can use small number of
points and views

— For instance, 5 points in two images for R,t

e 5 dof + 3n point locations < 4n point
measurements when n>5

= |n 1980’s many variants investigated
— Different projection models
— Correspondences of lines, points

— Some nice geometric problems, but studied in
absence of noise sensitivity/stability analysis
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Sensitive to Measurement Noise

= Solutions based on a small number of
points are not stable

— Errors of the magnitude found in most images
yield substantial differences in recovered 3D

values
= Method that works in practice called
factorization [Tomasi-Kanade 92]
— Works on sequence of several frames
— With correspondences of points

— Consider case of factorization for orthographic
projection, no outliers, can be extended
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Input: Sequence of Tracked Points

= Point coordinates
W,IJ:(U’U’V’U)
— Where | denotes frame (camera) index
and j denotes point index

— Points tracked over frames
e E.g., use corner trackers discussed previously

N points
INn each
frame

2 3 K frames
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Centroid Normalized Coordinates

* From observed coordinates w’;=(U’;;,V’;;)
Wfp:(u’ij - Uij» V’ij - Vij)
— Where
and Centroids

— , INn frame
Vii = (1/n) 2 V5

e I L -
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Normalization

= Goal of separating out effects of camera
translation from those of rotation

= Subtract out centroid to remove
translation effects

— Assume all points belong to object and present
at all frames

— Centroid preserved under projection

= | eft to recover 3D coordinates (shape) of
n points from k camera orientations
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Measurement Matrix

= 2n by k — 2 rows per frame, one col per
point

= |n absence of senor noise this matrix is
highly rank deficient

— Under orthographic projection rank 3 or less

Uiz - Ujp
W Uykq Ukn
| Vi1 Vin

i Vi1 Vkn 1
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Structure of W

- World poi_nt S;'=(X;",¥j »Z;') projects to
Image points
wy = myT (57 - t)
Vi =0T (s - t)
— Where m;, n; are unit
vectors defining

orientation of image "
plane in world ' m

— And t; Is vector from
world origin to
Image plane origin
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Structure of W (Cont’d)

= Can rewrite In centroid normalized
coordinates

— Since centroid preserved under projection
— Projection of centroid is centroid of projection

— T
— nNnT
— Where
Sj=Sj - S
and

s=(1/n) 3; s’

@
1(gg)f) Cornell Universit
5%%?2" ornell University




W Factors Into Simple Product

= W=MS where
— M i1s 2kx3 matrix of camera locations
— S I1s 3xn matrix of points in world

— Product is 2kx3 matrix W
e Clearly rank at most 3
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Factoring W

= Don’t know M,S only measurements W

= Glven noise or errors In measurements
seek least squares approximation
— Note assuming no outliers (bad data)

argminy, s | w-Ms |2

= Several methods for solving linear least
sguares problems
— Here highly rank deficient, use SVD

é‘f@j@ Cornell University
s




Singular Value Decomposition

= Seek M,S from the SVD of W=UxV

— Where U and V are orthogonal and X is
diagonal matrix
= Know from structure of problem that
rank Is at most 3
— Consider only 3 largest singular values, let ¥’
denote matrix with other singular values set
to zero
= Then estimate
M™=U X'
ST= YV
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Factorization Not Unique

= Any linear transformation of M,S possible
W=MS=M(LL-1)S=(ML)(L-1S)
= Often referred to as “affine shape”
— Preserves parallelism/coplanarity
= Still haven’t used a constraint on the form

-
of M my
— Describes camera plane m: -
orientation at each frame kT
. n
m;,n. all unit vectors +
m;n; =0 n,T
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Factorization Results
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Extensions

= Paraperspective
[Poelman & Kanade, PAMI 97]

= Sequential Factorization
[Morita & Kanade, PAMI 97]

= Factorization under perspective
[Christy & Horaud, PAMI 96]
[Sturm & Triggs, ECCV 96]

= Factorization with Uncertainty
[Anandan & lrani, 1JCV 2002]




Bundle Adjustment

= More generally don’t necessarily have linear
least squares form of problem

= Technique from photogrammetry literature
dating back many years

= Needs good initialization

= Estimate projection matrices and 3D points
which minimize image distance d between
re-projected and measured points

min,, .. 2 4B X}, x;
1]
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Bundle Adjustment

* Involves adjusting bundle of rays between
each camera center and set of 3D points

— Or equivalently, each 3D point and set of
camera centers z

= Maximum likelihood
estimate under
Gaussian noise model

= Xj's depend on Pj’s
and vice versa
— Solved iteratively

w
% Imoge Space
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Iterative Minimization

= |Local search from initial solution
— Convergence depends on solution quality

= |In full projective case each camera has 11
dof and each point 3 dof

— Often use 12 parameter homogeneous P
matrix, so 3n+12k

= Using Levenberg-Marquardt algorithm

— Matrices of dimension (3n+12k) x (3n+12k)
can be slow to factor/invert

= Various approaches
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Addressing Computational Issues

= Solve smaller problems and merge...

* Interleave by alternately minimizing error
by moving cameras for fixed point
locations and vice versa

— Limits matrices to 12x12 (or number of dof
squared)

— May have different convergence properties

= Sparse matrix methods

* Initial estimate can be obtained using
factorization iIf (nearly) affine




Sparsity

a’?,j — f(K:Rjatj:XZ)
62] — g(KaRjﬁtj:X?,)
= Only a few entries in Jacobian are non-
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Example 3D Reconstruction

APAN

[Pollefeys 98-01]



Example Cont’d

)
=
73]
=)
v
o
=1
|
£
@]
o




Structure from Motion: Limitations

= Very difficult to reliably estimate metric
structure and motion unless:

— Large (x or y) rotation, or
— Large field of view and depth variation

= Camera calibration important for Euclidean
reconstructions

* Need good feature tracker /\
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