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Last Time

Visual motion (optical flow)
– Apparent motion of image pixels over time

Brightness constancy assumption and 
optical flow constraint equation (gradient 
constraint)

Direct and matching-based methods for 
estimating motion field (u,v)
– Dense and sparse matching
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Matching vs. Gradient Based

Consider image I translated by
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Discrete search methods search for the best estimate, u(x,y),v(x,y).
Gradient methods linearize the intensity function and solve for the 
estimate.



4

Patch Matching

Determining correspondences

– Block matching or SSD (sum squared 
differences)
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Dense Matching Based Methods

Block matching for larger displacements
– Define a small area around a pixel as the 

template
– Match the template against each pixel within a 

search area in next image.
– Use a match measure such as correlation, 

normalized correlation, or sum-of-squares 
difference

– Choose the maximum (or minimum) as the 
match

– Sub-pixel estimate (Lucas-Kanade)
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Gradient Based Methods

Iterative refinement
Estimate velocity at each pixel using one 
iteration of Lucas and Kanade estimation
Warp one image toward the other using 
the estimated flow field
(easier said than done)

Refine estimate by repeating the process
Coarse-to-fine process for larger motions
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Optical Flow: Iterative Estimation

xx0

Initial guess: 
Estimate:

estimate 
update

(using d for displacement here instead of u)
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Optical Flow: Iterative Estimation
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Optical Flow: Iterative Estimation
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Optical Flow: Iterative Estimation

xx0
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Optical Flow: Iterative Estimation

Some issues:
– Warping not easy (need to be sure errors in 

warping are smaller than the estimate 
refinement)

– Warp one image, take derivatives of the other 
so you don’t need to re-compute the gradient 
after each iteration.

– Often useful to low-pass filter the images 
before motion estimation (for better derivative 
estimation, and linear approximations to image 
intensity)
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Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity.
I.e., how do we know which ‘correspondence’ is correct? 

Nearest match correct 
(no aliasing)

Nearest match incorrect 
(aliasing)

To overcome aliasing: coarse-to-fine estimation.

actual shift

estimated shift
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Robust Estimation

Noise distributions are often non-Gaussian, having much 
heavier tails.  Noise samples from the tails are called 
outliers.

Sources of outliers (multiple motions):
– specularities / highlights
– jpeg artifacts / interlacing / motion blur
– multiple motions (occlusion boundaries, transparency)

velocity spacevelocity space

u1

u2
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Robust Estimation

Standard Least Squares Estimation allows too much influence 
for outlying points (similar in stereo and other correspondence 
problems)
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Robust Estimation
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IRLS (iteratively reweighted least squares)

Use of robust error functions
– Robust gradient constraint

– Robust SSD
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Robust Estimation

Problem: Least-squares estimators penalize deviations between 
data & model with quadratic error fn (extremely sensitive to outliers)

error penalty function influence function

Redescending error functions (e.g., Geman-McClure) help to reduce 
the influence of outlying measurements.

error penalty function influence function
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“Global” (Nonlocal) Motion Estimation

Estimate motion vectors that are 
parameterized over some region
– Each vector fits some low-order model of how 

vector field changes spatially

Regions can be contiguous image patches 
or “layers” of some kind
Most successful motion estimation 
techniques in practice use global motion 
estimates over patches and/or layers
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“Global” Motion Models

Often referred to as parametric motion
2D Models
– Affine
– Quadratic
– Planar projective transform (Homography)

3D Models
– Homography+epipole
– Plane+Parallax
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Motion Models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns
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Each pixel provides linear constraint on 6 (global) unknowns
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Least Squares Minimization  (over all pixels):

Example: Affine Motion
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Quadratic – instantaneous 
approximation to planar motion 2
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Other Global Motion Models
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Multiple (Layered) Motions

Combining global parametric motion 
estimation with robust estimation
– Calculate predominant parameterized motion 

over entire image (e.g., affine)
– Corresponds to largest planar surface in scene 

under orthographic projection
• If doesn’t occupy majority of pixels robust 

estimator will probably fail to recover its motion

– Outlier pixels (low weights in IRLS) are not 
part of this surface
• Recursively try estimating their motion
• If no good estimate, then remain outliers
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Limits of Gradient Based Methods

Fails when 
– Intensity structure in window is poor
– Displacement is large (typical operating range 

is motion of 1 pixel)
• Linearization of brightness is suitable only for 

small displacements

Brightness not strictly constant in images
– Less problematic than appears, since can pre-

filter images to make them look similar

Large displacements can be addressed by 
coarse-to-fine (challenge to do locally)
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image Iimage J

av
Jwwarp refine

av aΔ v
+

Pyramid of image J Pyramid of image I

image Iimage J u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse to Fine
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Coarse to Fine Estimation

Compute Mk, estimate of motion at level k
– Can be local motion estimate (uk,vk)

• Vector field with motion of patch at each pixel

– Can be global motion estimate
• Parametric model (e.g., affine) of dominant 

motion for entire image

– Choose max k such that motion about one pixel

Apply Mk at level k-1 and estimate 
remaining motion at that level, iterate
– Local estimates: shift Ik by 2(uk,vk)
– Global estimates: apply inverse transform to Jk-1
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Global Motion Coarse to Fine

Compute transformation Tk mapping pixels 
of Ik to Jk

Warp image Jk-1 using Tk

– Apply inverse of Tk

– Double resolution of Tk (translations double)

Compute transformation Tk-1 mapping 
pixels of Ik to warped Jk-1

– Estimate of “residual” motion at this level
– Total estimate of motion at this level is 

composition of Tk-1 and resolution doubled Tk

• In case of translation just add them
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Affine Mosaic Example

Coarse-to-fine affine motion 
– Pan tilt camera sweeping repeatedly over scene

Moving objects removed from background
– Outliers in motion estimate removed
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Motion Representations

How can we describe this scene?
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Block-based Motion Prediction

Break image up into square blocks
Estimate translation for each block
Use this to predict next frame, code 
difference  (MPEG-2)
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Layered Motion

Break image sequence up into “layers”:

Describe each layer’s motion (generally 
parametrically)
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Layered Motion

Advantages:
– Can represent occlusions / disocclusions
– Each layer’s motion can be smooth
– Video segmentation for semantic processing

Difficulties/challenges:
– How do we determine the correct number of 

layers (independent motions)?
– How do we assign pixels to layers?
– How do we model the motions?
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Layers for Video Summarization



36

Background Modeling (MPEG-4)

Convert masked images into a background 
sprite for layered video coding

+ + +

=
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What are Layers?

[Wang & 
Adelson, 1994]
Intensities
Alphas
Velocities
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Forming Layers
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Forming Layers
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How do we estimate the layers?

1. Compute coarse-to-fine flow
2. Estimate affine motion in blocks 

(regression)
3. Cluster with k-means
4. Assign pixels to best fitting affine region
5. Re-estimate affine motions in each region
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Layer Synthesis

For each layer:
Stabilize the sequence with the affine 
motion
Compute median value at each pixel
Determine occlusion relationships
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Sparse Feature Matching

Shi-Tomasi feature tracker 
1. Find good features (min eigenvalue of 2×2 

Hessian)
2. Use Lucas-Kanade to track with pure 

translation
3. Use affine registration with first feature patch
4. Terminate tracks whose dissimilarity gets too 

large
5. Start new tracks “when needed”

Unmatched features
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Feature Tracking Example
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Feature Tracking: Motion Models 
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Feature Tracking Results


