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Last Time

* Visual motion (optical flow)
— Apparent motion of image pixels over time

= Brightness constancy assumption and

optical flow constraint equation (gradient
constraint)

L, u+l, v+ 1 =0

= Direct and matching-based methods for
estimating motion field (u,v)
— Dense and sparse matching
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Matching vs. Gradient Based

Consider Image | translated by Uy, V,

(X, y)=1(x,y)
I, (X+Uy, Y +Vo) = 1(X,y) +77,(X, y)
EuY) =Y (1% y) 1 (x+U, y +V))?
:Z(I(X’ y)_ | (X_uo U, Y-V, +V)_771(X’ y))2

Discrete search methods search for the best estimate, u(x,y),v(X,y).
Gradient methods linearize the intensity function and solve for the
estimate.
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Patch Matching

= Determining correspondences

— Block matching or SSD (sum squared
differences)

E(x,y; d) = SN U@ +d )~ IR, Y)]?
(', y)eN(x,y)
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Dense Matching Based Methods

= Block matching for larger displacements

— Define a small area around a pixel as the
template

— Match the template against each pixel within a
search area in next image.

— Use a match measure such as correlation,
normalized correlation, or sum-of-squares
difference

— Choose the maximum (or minimum) as the
match

— Sub-pixel estimate (Lucas-Kanade)
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Gradient Based Methods

Iterative refinement

Estimate velocity at each pixel using one
Iiteration of Lucas and Kanade estimation

Warp one image toward the other using
the estimated flow field

(easier said than done)
Refine estimate by repeating the process
Coarse-to-fine process for larger motions




Optical Flow: lterative Estimation

A f1(=x) fo(x)

estimate

Initial guess: dg = 0
update

Estimate: dy =dp+d

>
Xo X

(using d for displacement here instead of u)
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Optical Flow: lterative Estimation

A filz —d1) ,  #5(2)

estimate

Initial guess: d;
update

Estimate: do = dq + d

=<V
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Optical Flow: lterative Estimation

A filz —d2) | #5(2)

estimate

Initial guess: do
update

Estimate: d3 = do + d

=<V
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Optical Flow: lterative Estimation

A fi(z — d3) = fa()
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Optical Flow: lterative Estimation

= Some Issues:

— Warping not easy (need to be sure errors in
warping are smaller than the estimate
refinement)

— Warp one image, take derivatives of the other
SO you don’t need to re-compute the gradient
after each iteration.

— Often useful to low-pass filter the images
before motion estimation (for better derivative
estimation, and linear approximations to image
Intensity)
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Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because
Images can have many pixels with the same intensity.

l.e., how do we know which ‘correspondence’ is correct?

4 f1(z) fo(x) A fi(z) fo(x)

actual shift

S

estimated shift

Nearest match correct Nearest match incorrect
(no aliasing) (aliasing)

To overcome aliasing: coarse-to-fine estimation.
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Robust Estimation

* Noise distributions are often non-Gaussian, having much
heavier tails. Noise samples from the tails are called

outliers.

= Sources of outliers (multiple motions):
— specularities / highlights
— jpeg artifacts / interlacing / motion blur

— multiple motions (occlusion boundaries, transparency)
velocity space
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Robust Estimation

Standard Least Squares Estimation allows too much influence
for outlying points (similar in stereo and other correspondence
problems)

028 ¢ ° E(m):Zp(XI)

g'
(%) = (% —m)?

Influence y (x) = Z—p =(X. —m)
X
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Robust Estimation

» |[RLS (iteratively reweighted least squares)

= Use of robust error functions
— Robust gradient constraint

Ed (us’vs) :Zp(lxus + Ist + It)

— Robust SSD

Ed (US,VS)ZZIO(I(X, y)—J(X+US,y+VS))
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Robust Estimation

Problem: Least-squares estimators penalize deviations between
data & model with quadratic error f" (extremely sensitive to outliers)

error penalty function influence function
A a (E)
ple) = €3 ble) = 5= = 2e

N

Redescending error functions (e.g., Geman-McClure) help to reduce
the influence of outlying measurements.

error penalty function influence function
2 2¢€¢s
: (e 5) =
€ 8) = ' 2)2
p(e; s) st &2 (s + €2)

\ 4

%f;né)? Cornell University




“Global” (Nonlocal) Motion Estimation

= Estimate motion vectors that are
parameterized over some region
— Each vector fits some low-order model of how
vector field changes spatially

= Regions can be contiguous image patches
or “layers” of some kind

» Most successful motion estimation
techniques In practice use global motion
estimates over patches and/or layers
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“Global” Motion Models

= Often referred to as parametric motion

= 2D Models
— Affine
— Quadratic
— Planar projective transform (Homography)

= 3D Models
— Homography+epipole
— Plane+Parallax
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Motion Models

JI‘ / m.ulmn pm]e-:me
traus, O
Eu-:l.tdean aﬁf'me

e
Translation Affine Perspective 3D rotation
2 unknowns 6 unknowns 8 unknowns 3 unknowns
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Example: Affine Motion

u(x,y)=a,+a,x+a,y

Substituting into B.C. Equation:
v(X,y)=a, +a;x+a.y

l-u+l, -v+1 =0

| (a, +a,x+azy)+1 (a, +asx+agy)+ 1, =0

Each pixel provides linear constraint on 6 (global) unknowns

Least Squares Minimization (over all pixels):

Err(@) =Y 1, (@, + a,x+a,y) +1,(a, +ax+agy) +1,)
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Other Global Motion Models

Quadratic — instantaneous
approximation to planar motion

Projective — exact planar motion
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u=q, +q2X+q3y+q7X2 + (g XY

V=0, +0sX+0gY + 0, Xy + 0y’

e h, +h,x+hyy
h, + hyx+hyy

y'e h, + h.x+hgy
h, + hyx+hyy
and

u=Xx-x, v=y-y




3D Motion Models

Xu_m%+my+m+7h
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” Homography+Epipole ) h,X+hgy +h + 71,
Nttt . hyX+hgy+hg + 7t
Global parameters: [%:---No, b G, h.x+hyy + h, + 7t
\_Local Parameter:  [7(X,Y) ) land: u=x-x, v=y—-y
Daci )
Residual Planar Parallax Motion | |, _yv_y—_7 (¢ x_t)
Global parameters: bt A
w Y
- v=y"—Xx= t,y—t
 Local Parameter: 7(X,y) ) y ot (Ly-t,)




Residual Planar Parallax Motion
(Plane+Parallax)

Original sequence Plane-aligned sequence Recovered shape

Block sequence from [Kumar-Anandan-Hanna’94]

“Given two views where motion of points on a
parametric surface has been compensated, the
residual parallax is an epipolar field”
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Dense 3D Reconstruction
(Plane+Parallax)

Original
sequence

Plane-aligned
sequence

Recovered shape
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Multiple (Layered) Motions

= Combining global parametric motion
estimation with robust estimation
— Calculate predominant parameterized motion
over entire image (e.g., affine)
— Corresponds to largest planar surface in scene
under orthographic projection

e If doesn’t occupy majority of pixels robust
estimator will probably fail to recover its motion

— Outlier pixels (low weights in IRLS) are not
part of this surface

e Recursively try estimating their motion

e If no good estimate, then remain outliers
Qf@} Cornell University




Limits of Gradient Based Methods

= Fails when
— Intensity structure in window Is poor

— Displacement is large (typical operating range
IS motion of 1 pixel)
e Linearization of brightness is suitable only for
small displacements

= Brightness not strictly constant in images

— Less problematic than appears, since can pre-
filter images to make them look similar

= Large displacements can be addressed by
coarse-to-fine (challenge to do locally)
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Coarse to Fine

Pyramid of image |



Coarse to FIine Estimation

= Compute MK, estimate of motion at level k
— Can be local motion estimate (uk,vk)
e Vector field with motion of patch at each pixel

— Can be global motion estimate

e Parametric model (e.g., affine) of dominant
motion for entire image

— Choose max k such that motion about one pixel

= Apply Mk at level k-1 and estimate
remaining motion at that level, iterate

— Local estimates: shift Ik by 2(uk,vk)
— Global estimates: apply inverse transform to Jk-1
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Global Motion Coarse to Fine

= Compute transformation Tk mapping pixels
of IX to JK

= Warp image Jk-1 using Tk
— Apply inverse of Tk
— Double resolution of Tk (translations double)
= Compute transformation Tkl mapping
pixels of Ik to warped Jk-1

— Estimate of “residual” motion at this level

— Total estimate of motion at this level iIs
composition of Tk1 and resolution doubled Tk

e |n case of translation just add them
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Affine Mosaic Example

= Coarse-to-fine affine motion
— Pan tilt camera sweeping repeatedly over scene

= Moving objects removed from background
— Qutliers in motion estimate removed

A o T R e vk
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Motion Representations

= How can we describe this scene?
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Block-based Motion Prediction

* Break image up into square blocks
* Estimate translation for each block

* Use this to predict next frame, code
difference (MPEG-2)

o e e ——— I 3
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Layered Motion

* Break image sequence up into “layers”:

= Describe each layer’'s motion (generally
parametrically)

@ Cornell University




Layered Motion

= Advantages:
— Can represent occlusions / disocclusions
— Each layer’s motion can be smooth
— Video segmentation for semantic processing

= Difficulties/challenges:

— How do we determine the correct number of
layers (independent motions)?

— How do we assign pixels to layers?
— How do we model the motions?
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Layers for Video Summarization

Background scene (players removed) Complete synopsis of the video
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Background Modeling (MPEG-4)

= Convert masked images into a background
sprite for layered video coding
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What are Layers?

= [Wang &
Adelson, 1994]

= |Intensities
= Alphas
= Velocities
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Tntamaty map

Alpha map

Alpha manp




Forming Layers

Original scene
Jl

.\-\-"‘-\_
H—Individual frames

Accumulated layer
| —

| Visible portion
at one instant.

(b)
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Forming Layers

Fignre T: (a) Frame 1T warped with an affine transformation ta align the flowerbed wegion with that of frame 10 (h)
Original frame 10 nsed as reference, (o) Frame 30 warped with an affine transformation ta align the flowerbed region with
that of frame 17,

Fignre &: Accnmulation of the flowerbed, Timage intensities are abtained from a temparal median operation an the mation
compensated images. Only the regions belanging ta the flowerbed layer is aconmmlated in this image, Note also aochided
regions are correctly recovered by aconmnlating data over many frames,
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How do we estimate the layers?

1. Compute coarse-to-fine flow

2. Estimate affine motion in blocks
(regression)

3. Cluster with k-means
. Assign pixels to best fitting affine region
5. Re-estimate affine motions in each region

AN

image + final

sequence ) - seqmentation
optic flow model model region
—i - - ——- F——- e EEEE———
astimator *| astimator marger classifier

t ;

region Fegicn ragicn
genarator [ filter |™® splitter
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Layer Synthesis

= For each layer:

=  Stabilize the sequence with the affine
motion

= Compute median value at each pixel
= Determine occlusion relationships
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Sparse Feature Matching

= Shi-Tomasi feature tracker

1.

W

Find good features (min eigenvalue of 2x2
Hessian)

. Use Lucas-Kanade to track with pure

translation

. Use affine registration with first feature patch
. Terminate tracks whose dissimilarity gets too

large

. Start new tracks “when needed”

= Unmatched features
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Feature Tracking Example

Figure 1: Three frame details from Woody Allen’s
Manhattan. The details are from the lst, 11th, and
21st frames of a suhsequem:e from the mowie.

Figure 2: The traffic sign wimdows from frames

1,6,11,16.21 as tracked (top), and warped by the com-
puted deformation matrices (bottom).
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Feature Tracking: Motion Models
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Figure J: Pure translation (dashed) and affine motion
(solid) dissimilarity measures for the window sequence
of figure 1 (plusses) and 4 [circles).
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Feature Tracking Results

Figure 13: Labels of some of the features in figure 11.
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Figure 14: Six sample features through six sample
frames.

@ Cornell University

005,

Qo4

dmimikrky
[}
B

aons

oo

0005

[x]

Figure 15: Affine motion dissirmlanty for the features
n figure 11. Notice the good discrimination between
good and bad features. Dashed plots indicate aliasing
(see text).

Features 24 and 60 deserve a special discussion, and



